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Gaussian processes (GPs) are a Bayesian machine learning (ML) approach widely used to construct
surrogate models for the uncertainty quantification (UQ) of computer simulation codes in industrial
applications. It provides both a mean predictor and an estimate of the posterior prediction variance,
the latter being used to produce Bayesian credibility intervals. Interpreting these intervals relies on
the Gaussianity of the simulation model and the well-specification of the priors, which may not be
appropriate. We propose to address this issue with the help of conformal prediction (CP), which is a
finite-sample and distribution-free technique for estimating prediction intervals with marginal cov-
erage guarantees. In the present work, a method for building adaptive cross-conformal prediction
intervals is proposed by weighting the nonconformity score with the posterior standard deviation of
the GP. The resulting CP intervals exhibit a level of adaptivity akin to Bayesian credibility sets and
display a significant correlation with surrogate model local approximation error while being free from
the underlying model assumptions and having marginal frequentist coverage guarantees. These esti-
mators can be used to evaluate the quality of a GP surrogate model and can assist a decisionmaker in
choosing the best prior to the specific application of the GP. We illustrate the proposed method’s per-
formance through a panel of numerical examples based on various computer experiments, including
the GP metamodeling of analytical functions and an expensive-to-evaluate simulator of the clogging
phenomenon in steam generators of nuclear reactors.
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1. INTRODUCTION

1.1 Motivation and Overview

In the design and analysis of computer experiments (Fanb, &096), the “Verification, Val-
idation, and Uncertainty Quantification” (VV&UQ) framewohas become a gold standard in
many engineering fields for assessing the impact of uncdigaiin numerical simulation mod-
els (De Rocquigny et al., 2008; Ghanem et al., 2017; Sullig@i5). Uncertainty quantification
(UQ) defines a computer model as a functipmmapping ad-dimensional inputX € X C R¢

to a scalar outpuY” € Y C R through the relationshiy” = ¢(X). These models are critical
in engineering for decision-making tasks such as maintmaonheduling and risk assessment
of industrial systems. Typically; represents numerical solvers for partial differentialagns

or high-fidelity multi-physics models. In UQ, uncertairstiare often treated probabilistically,
allowing input samples to be drawn from the joint distrilbutiof X and propagated through
[e.g., via Monte Carlo sampling, see Rubinstein and Kro280§)] to obtain the output dis-
tribution of Y. This process treatg as a “black box,” requiring no modifications to the under-
lying code. However, whep is computationally expensive (e.g., requiring hours orsdagr
evaluation), standard UQ techniques can become intra&ct@bladdress this, metamodels (or
surrogate models), denoted Hycompute an estimation function thanks to observation aiada
are often employed to reduce computational costs. Thisrgapeses on Gaussian process (GP)
regression metamodels, also known as “Kriging” metamofi&amacy, 2020; Rasmussen and
Williams, 2006).

In GP regression, various validation metrics have beenldped in the last decades to as-
sess the predictive quality of the fitted GP metamodel (Degataf., 2022; Marrel and looss,
2024). Some effort has been put into proposing validatiotriosethat enable one to go beyond
the measure of the quality of the mean prediction (typicaiBasured by the predictivity coeffi-
cient), for instance, by measuring the quality of the pasteredicted variance. As exemplified
in De Carvalho et al. (2022) and Jaber et al. (2025), additioross-validation [such &s-fold
or leave-one-out (LOO)] techniques can be used for asgpfsinrobustness of the estimation
on these validation indicators. However, to the best of titb@s’ knowledge, validation is still
an open question, and no strong consensus has been reagheting the precise metrics that
should be used for validating a GP metamodel or any othermuetal in general. An efficient
surrogate model must be highly adaptive to local informrmatmarticularly the training data. By
conditioning on the training data, the GP metamodel dewdogeeper understanding of the un-
derlying patterns and avoids overconfidence in regions vtibed or no data. The reliability of
GP predictions is evaluated through Bayesian credibifitgrivals, which reflect the confidence
in these predictions. This reliability is significantly inéinced by both the quality and quantity of
the training data. In areas with more observed data thagssieisy, the GP predictions are more
confident and reliable, resulting in narrower credibilitgervals. Additionally, properly tuned
hyperparameters and carefully chosen covariance keraelgprove the GP’s trustworthiness.
Conversely, poor choices in these parameters can lead tty aygimistic or overly conserva-
tive uncertainty estimates. Along these lines, an altér@aipproach, proposed by Acharki et al.
(2023), aimed at enhancing the predictive capacity of a GRimadel by optimizing the hy-
perparameters of the kernel in order to tackle model misBpation and obtain more robust
Bayesian credibility intervals. However, this methodl stiéavily relies on the assumption of
Gaussianity of the original model.

In the present paper, the idea is to adapt the conformal gifedi(CP) framework (Vovk
etal., 2005) so as to ensure more reliable prediction iatefer GP metamodels. This approach
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avoids relying heavily on strong Gaussian assumptions winga well-defined prior for the
covariance kernel of the process. At the same time, it Igedhe flexibility and adaptability
of the local approximation provided by GP models. These teypdements allow one to fully
interpret the uncertainty given by the predictive inteswak propose. This complementary tool
can thus be used to assist a decisionmaker in evaluatingetiera quality of a GP metamodel
in the light of the application for which it is used. We shoeldphasize that the methodologies
developed in this paper are more generic than the speciftexiof VV&UQ and can be applied
to different scenarios of GP regression, but we choose tairein the setting of computer
experiments. The notations are used accordingly.

As for CP, it has gained in the last decade a huge popularityinvthe machine learning
(ML) community since it allows for distribution-free UQ iroth classification and regression
applications (Angelopoulos and Bates, 2023; Vovk et alg5)0The CP paradigm enables the
estimation of frequentist prediction intervals for any Mlodels (and, consequently, any meta-
model) that are agnostic to the specific family of models udading the learning step. The
prediction sets come with frequentist coverage guaranteeaning that, without any additional
assumptions on the original model, the probability of theetcomputer code output value (at a
new input point), lying within the metamodel predictionantal, will be above a chosen confi-
dence threshold. The only key assumption necessary fotroating CP sets is thexchange-
ability of the dataset (Da Veiga, 2024), which means that the comativa of the training data
set with the new test point is interchangeable in law, whectypically the case when dealing
with independent and identically distributed (i.i.d.) gdes such as those obtained from a crude
Monte Carlo design of experiments (DoE) in UQ of computer slsbr as encountered in many
standard ML datasets.

A primary challenge in CP lies in produciaglaptiveprediction intervals, which refers to the
property of varying interval width for different test pagnfThe concept of “adaptivity” (Romano
et al., 2019) is intrinsically tied to thexpressivityof the metamodel, as the interval width should
be small when the metamodel prediction error is minimal @rtipular around training points)
and large otherwise. For the purpose of GP regression gueasi#tiuation, the adaptivity of CP
interval candidates is crucial.

Three main families of methods exist for building CP intésvéhe historical “full-confor-
mal” paradigm (Vovk et al., 2005), the “split-conformal i the “cross-conformal” settings
(Angelopoulos and Bates, 2023). For the standard CP estimat these settings, adaptivity is
often lacking, and the exploration abnconformity score@vhich measure how unusual a sug-
gested outcome seems with respect to other output valules freining dataset) for ensuring this
property has been predominantly studied and developeckisiilit-conformal case (Lei et al.,
2021; Romano et al., 2019; Seedat et al., 2023). Neverthdlds approach is not practical in
cases with limited budgets and/or dataset size (which cainébease for costly-to-evaluate com-
puter models in industrial applications). The split-canfal paradigm necessitates the allocation
of a calibration set dividing the available data into three parts for trainihg tnetamodel, cali-
brating the prediction sets, and testing, respectivelywesely, the cross-conformal paradigm,
and especially the “Jackknife+” interval estimators (Barbt al., 2021), allows for the utiliza-
tion of the entire dataset but requires an additional coatpurtal budget since it implies training
multiple LOO metamodels.

In this paper, we introduce a methodology to obtain distidnifree, finite-sample, and
adaptive prediction intervals with a desired property o&fginal coverage” (which will be later
detailed) for GP metamodels in computer experiments. Wd@ntpese estimators to evaluate
the GP metamodel performance and demonstrate their &feaess in differentiating between
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various prior kernel choices. The proposed approach istiited through several numerical
examples using reference analytical functions, as welhasa@ustrial computer-code use case.

1.2 Related Works

Within the full-conformal paradigm, the concept of “confualizing” GPs can be traced back
to the Burnaev-Wasserman progra(ivovk et al., 2005). A theorem establishes a theoretical
comparison between Bayesian credibility sets and CP setaang the Gaussianity and well-
specification of the original model (Burnaev and Vovk, 20T4)jis limit theorem provides guar-
antees that the differences between the upper and loweoanslpf the two intervals follow
a zero-mean Gaussian distribution asymptotically. Thelkemion drawn is that conformalizing
under the Gaussian hypothesis is not asymptotically “widtsen standard Bayesian credibility
sets. Thorough numerical comparisons with Bayesian cifédibets in various scenarios are
performed in Burnaev and Nazarov (2016).

The full-conformal paradigm extends to spatial Kriging adlwas demonstrated in Mao et al.
(2024), where CP algorithms are developed for non-Gaussitanby establishing conditions for
approximate exchangeability. However, it is important édenthat full-conformal methods are
computationally expensive, requiring a complete grid gean the output space, which can
quickly become prohibitive (Barber et al., 2021; Papaddp®2024; Vovk et al., 2005). To
enhance the efficiency of full-conformal predictive int&ls; a recent work from Papadopoulos
(2024) explores the idea of conformalizing GPs. In this wthk structure of the GP prediction is
used to shrink the output space and ease the computatioli-obhformal intervals. Moreover,
it makes use of a nonconformity score similar to the one pgedan the present paper. However,
we stress that the motivations of our work are different:ube of GP metamodels is standard in
UQ studies for computer experiments, and we propose a aoafanethod to lower the number
of hypotheses required to interpret prediction intervalss is different in Papadopoulos (2024),
where GPs are used for efficiently estimating full-confdrpradiction intervals.

The conformal paradigm finds application in enhancing Biayesptimization, particularly
when GPs serve as query functions (Stanton et al., 2023%. iShéspecially relevant when
Bayesian credible sets obtained are deemed unreliableodnedel misspecification.

Finally, notice that an idea for combining the use of a calilon set and a specific CP esti-
mator (the Jackknife+ one, detailed further) for obtairadgptive intervals has been explored in
the recent work of Deutschmann et al. (2023). However, tdtet of the authors’ knowledge,
pure cross-conformal adaptive methods have not been fouretént literature.

1.3 Contributions and Organization

In this work, we introduce a nonconformity score tailoredtfte use of GP metamodels within
the cross-conformal Jackknife paradigm (detailed fujthetilizing this score, we derive an
adaptive prediction interval named “J+GP,” along with itsif-max” variant, and establish the
marginal coverage. By quantifying the adaptivity of theseestimators, we show that the length
of these intervals is interpretable as a good proxy for gat® precision. This interpretation is
supported by the significant statistical correlation obséhetween the interval widths and the
absolute values of the metamodel error, showcasing theatikty to assess the quality of a GP.
We provide a reproducible and efficient implementation eftiethodology through a Git-
Hub repository. This repository is based on two pre-existing Python liestriopen source

f Available at https://github.com/vincentblot28/confaiedgp
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initiative for the Treatment of Uncertainties, Risks’N &tacs (OpenTURNS), an open source
UQ platform (Baudin et al., 2017), and Model Agnostic PréditiInterval Estimator (MAPIE),
a library dedicated to CP (Cordier et al., 2023).

The paper is organized as follows. Section 2 recalls theitlefirand main principles of GP
regression and conformal predictors. Section 3 providegatmal definition of the new “J+GP”
conformal predictor, its estimator, and its variants. Mwex, a methodology for validating the
link between the error spread and the adaptivity is alsogotesl. Section 4 proposes numerical
comparisons, through a panel of datasets for regressiks, tastween usual GP-based credibil-
ity intervals and the proposed J+GP variants. Finally, i8ed draws the main conclusions of
this work and discusses a few perspectives.

2. NOTATIONS AND BACKGROUND

In the rest of this paper, suppose a fixed probability sgacer, P). Random variables are de-
noted with capital letters\'(u, 0%) denotes the Gaussian distribution with meaand standard
deviationo, while T (a, b, ¢) denotes the triangular distribution with mode [a,c].g: X — Y
denotes a deterministic function whete C R? and)’ C R are regular domains. For a sBt

15 denotes the indicator function dp. The cardinal of the output space will be denoted by
ngid = Card)’). The Cartesian product of the two spaces is denoted by X' x ), and x
denotes the set of subspaces of asdfor a givenN € N, we fix an i.i.d. dataseDy of size

N whose elements are written equivalently2$ = (X g(X®)) = (X®,v®) for all

i € {1,..., N}. We denote the features (or inputs) Ky= (X1, ..., X)) and similarly the
outputsg(X) = (g(X@P),...,g(X®™)), and the dataset is denoted By, = (X, g(X)).

As customary in supervised ML, the dataset is split intonfraj and testing subsets, typi-
cally Dy = D, UD,,, with N = n + m and wheren, m are the respective sizes of the two
subsets. We denote lijya metamodel of; trained onD,,, andg_; is the corresponding LOO
metamodel trained o®,,\ (X ¥, g(X@)) with i € {1,...,n}. The Spearman correlation co-
efficient between two random variablés andY’, corresponding to the Pearson coefficient in
the rank space, is denoted bypeamatX,Y"). The space of continuousdifferentiable func-
tions on. is denoted by?*(£). The space of square matrices of ordesn R will be denoted
by M,,(R). For an interval C R, we denote its length &&7). For anym € N, &(m) denotes

the set of permutations ovél, . .., m}. For any finite subseftv; },—1... ,, of an ordered set, the
(1 — «)-empirical quantile, withx € (0, 1), is given by
@nto{vi} :==the[(1— «)(n + 1)]th smallest value 06y, . . ., vy, 1)

where[-] denotes the ceil function. Similarly, tkeempirical quantile is given by
@n.olvi} = the [a(n + 1) |th smallest value ofy, .. ., vy, 2
where|-| denotes the floor function such that

Gnodvit = —Gala{—vi}- (3)

2.1 Gaussian Process Metamodeling
2.1.1 General Definitions

Consider a computer modg¢hand corresponding outputs on an i.i.d. design-@xperimentsX .
These outputs can be perturbed by some additive rgisgeaning that for all € {1,...,n},
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we have . .
y® = g(X(Z)) + €4 (4)

with € normally distributed for example. To build a GP metamodegRussen and Williams,
2006) of such a functiop, suppose thaj is the realization of a certain G® ~ GP(M, K),
whereM : X — ) is themeanof the process and : X x X — R is the covariance
kernelof the process. Then, this processimditionedon the available datasét,. By doing so,
this procedure amounts to performing Bayesian regressinsidering a Gaussigrior on the
functiong in order to then obtain posteriordistribution. By considering zero additive noise
on the outputs, this special case is referred to ag@Ppolation and this is the usual path taken
for building GP surrogates of deterministic codes. The gam@inciple of this type of method
is sketched in Fig. 1.

For simplicity, we choose that/ = 0 (corresponding to the case usually called “ordinary
Kriging”), and we use a Matérn-kernel defined, for alv = (2k+1)/2, k € Nandx, 2’ € X,
by

K(SE, I/) = K(V,G,G) (Iv xl)

22 (mm—ww)vK (@Iw—w’l)

O T(v) 0 Y o )
where K, is a modified Bessel function of the second kind &nid the Euler gamma function.
This kernel allows better control of the regularity of th@pess through its hyperparameter
since the corresponding sample paths will ligciy =% (X) (Gu et al., 2018). The final condi-
tional proces§~ := G|D,, is a GP with posterior mean and covariance functions defioedlf
x, 2’ € X as

(5)

g(z) == k(z)T K 1g(X),

~ 6
K(z,2") = K(x,2") — k(z) " K~ 1k(z"), ©)
where for allz € X,
k(z) = (K (2, X®),..., K(z, X™M)) " e R,

. . (7)

K = (K(X(Z),X(J)))lgi,jgn € M, (R).
9(z)
“g(z)
Data Prior Posterior

FIG. 1: GP interpolation metamodeling illustration. The data isrgut—output DoE computed with the
deterministic codgy. Then, one assumes these data correspond to a functiorsthatrajectory of an
underlying GP. In the absence of noise, the posterior psinéarpolates the data. In addition, this technique
produces nonzeraredibility intervals outside of the points iR,,.

Journal of Machine Learning for Modeling and Computing



Conformal Approach for GP Surrogates 43

The mean of the posterior procegacts as a metamodel for the deterministic functiptnus
in the case of GPg, = g. For a choice of the regularity parametethe hyperparametefs?, 0)
of the Matérn kernel can be optimized using either maximiiglihood estimation (MLE) or a
cross-validation (CV) strategy (Acharki et al., 2023). he ttase of ordinary Kriging, the usual
MLE optimization problem to be solved involves the negatoglikelihood and can be written
as

(oRies Omie) € a(rgzrg)in{g(X)TK—lg(X) + log(detK) }. (8)
(S

According to Acharki et al. (2023), the MLE procedure yielmister results if the kernel type
is well specified, while the CV method is more robust in theeaafsmisspecification. However,
this is not necessarily the case for GP interpolation asrmaatlin Petit et al. (2023). Far € X,
the posterior standard deviation is denoted by

V(@) == K"z, ). 9)

In this setting, it can be shown that fore {X@,..., X}, one hasy(z) =0 andg(z) =
g(z), meaning that the GP metamodel is interpolating.

If the code is perturbed with an additive noise, then the USEaregression setting is recov-
ered, and the covariance matrix has to take into accountcalfed nugget effe¢ctmeaning that
one needs to add a regularization term modeling the noigedi®n in the covariance matrix,
such that

K.:= K + oI, (10)

with I,, being the identity matrix of sizén x n). The new hyperparametet. has to be tuned
by constructing a full-likelihood, and the resulting metadsl is no longer interpolating (Ras-
mussen and Williams, 2006). The MLE optimization problenvii@comes

(ote, Onmie, 02 mie) € argmin{g(X)" K "g(X) + log(detK.)}. (11)

(02,0,02)

Moreover, a “full-Bayesian” approach exists to obtain tlsterior distribution of the hy-
perparameters and update the predictive distribution.é¥ew this method is out of the scope
of this paper and would probably be cumbersome in the cowofesttoss-conformal predictors
since it would require tuning several complex Monte Carlakéa chain algorithms on a large
number of LOO-validated metamodels.

The use of ordinary Kriging with Matérn kernels is usualhosen to simplify the GP defi-
nitions outlined in the preceding paragraphs. It is imparta note that the methodology intro-
duced does not rely on the specific priors used. In fact, iblsist to prior misspecification, as
will be demonstrated in the following sections.

2.1.2 Bayesian Credibility Intervals

In Bayesian inference, a credibility interval is relatedhe posterior distribution of a parameter.
For a certain credibility leve(l — x) € (0, 1), the value of the parameter should lie in this
interval with probability 1— « given the available data. In the case of GPs, the parameter is
the mean of the posterior GP, and for any new paift*1 ¢ X'\ X, the credibility prediction
interval is given by

CR(X(X(nH)) _ [E(X(nﬂ)) iul_(x/ﬁ(X("“))}, (12)
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whereu;_» is the(1—o/2)-quantile of the standard Gaussian distribution. Unde@aessian
assumption on the original function gfis truly modeled by the posterigt|D,,, then one should
have the exact training conditional coverage:

P (X)) € CRo(XHY) | D, ) =1 - o, (13)

whereCR « (X ("*+V) is apredictioninterval for the functiory.

Even if the Gaussian assumption holds true, a common ocmelis themisspecificatiorof
the prior model. This implies that the set of prior mean anthie family of kernels is proven to
be incorrect. In essence, the practical reliability of Bage credibility intervals, particularly for
GPs, can be significantly compromised.

2.2 Conformal Prediction Intervals
2.2.1 General Definitions

CP is a finite-sample and distribution-free framework follding prediction sets with a statis-
tical guarantee on the coverage rate for any predictiveritfgo (Vovk et al., 2005). Suppose
a given training datase®,, and a new test poinf "tV = (X "+1 y(+D) |t is assumed
that then + 1 points areexchangeabléVovk et al., 2005). Formally this means that for any
permutationr € &(n + 1), we have

(Za,..., 20D £ () Ze)y), (14)

whereZ denotes an equality “in law” (also called “in distributignMore concretely, this means
thatZ(»*+1 could have been used as a training point and that any traptimg could have been
a test point. An i.i.d. dataset is a special case of an exadabig dataset. For any confidence
levelx € (0,1), a conformal predictor of coverage-lx is any measurable function of the form
(Vovk et al., 2005):

Cu: Z"x X — 2V,

(15)
(Dr, X) = Cx(Dy, X) =: Cpp (X)),
such that, for a new test poig" %), one has the followingnarginalcoverage:
P (y<”+1> e cn,“(XWH))) >1-a (16)

where the probability is taken over the ddtg = D, U {Z(”“)}. To build estimators of
such set-functions, one relies on the use efoaconformity scoreThis score is defined as a
measurable function of the form (Vovk et al., 2005):

R: 2" x Z - R,
(Dn, Z) — R(Dn, Z),

which quantifies how “not representative” the paihis, compared to the dataset,. For exam-
ple, if a metamodej of a codeg has been trained dB,,, then a straightforward nonconformity
score is given by the residuals:

R(D,, Z(n-i-l)) _ |g(X(n+1)) _ ’g\(X(n-i-l))!_ (18)

It is noteworthy to insist that, in practice, the coverageperty in Eq. (16) is calledharginal
since it holds on average over all possible realizationfefttaining se,,. A more standard

(17)
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coverage is théraining-conditionalcoverage property (Angelopoulos and Bates, 2023), mean-
ing that, for a conformal predictor estimaioy, «, one has

P (Y(n+1) c CA'n_,a(X("“)) | Dn) >1-—«. (19)

There are mainly three ways of estimating such conformadiptars: “full-CP,” also called
“transductive CP” (Movk et al., 2005); “split-CP,” also bl “inductive CP” (Papadopoulos
et al., 2002a,b); and “cross-CP” (Vovk, 2015).

Transductive CP is historically the first CP method intraetliby Vovk et al. (2005). For any
choice of a nonconformity score, it implies computing thiéofwing set:

Croe (X)) = {y €y: %Card[{i € {1,...,n},R(D,,z")

> R(D (x09))] o

As mentioned in the introduction, transductive CP is coraponhally intensive as it involves
training one metamodel for each possible valug/inThis conformal predictor can be made
computationally effective in the cases of Ridge and Lasgoessions (Lei, 2019; Nouretdinov
etal., 2001)k-nearest neighbors algorithm (Papadopoulos et al., 2@18,)2and more recently,
GP regression (Papadopoulos, 2024).

Inductive — or split-CP — on the other hand, has a very low agatpnal cost as it requires a
single training of the learning model. However, it needsreate (or save) a proper “calibration”
(or “holdout”) set that contains observations that havebre@n used during the training phase.
This set is then used to estimate the quantiles of the eluinconformity scores (usually, the
residuals) on this set for constructing the intervals. Hamvefor industrial applications where
only a few hundred observations are available, such a ediliior set may be very difficult to
obtain.

Unlike the first two techniques, cross-CP has a relatively tomputational cost and does
not necessitate any holdout set. We now proceed to preseatdls-conformal predictors.

(20)

2.2.2 Cross-Conformal Prediction Sets

The “standard” Jackknife prediction intervals requirerfédEag a metamode§j on a training
datasetD,, as well as» metamodels built using the LOO validation technique, deddtyg_;,
with 1 < ¢ < n. Itthen makes use of tHd — «)-empirical quantile of the LOO residuals defined
by

RFC = [g(X®) —g_;(XD)]. (21)
For a new pointX ("*+1) and a coverage level4 «, the standard Jackknife prediction interval is
defined by

O o (X0 = [G(x ) 4 G, {REOY. (22)

Unfortunately, this prediction interval does not fulfillehmarginal coverage property in
Eq. (16), especially in the case of a small dataset, as nmmttiin Barber et al. (2021). To
circumvent this limitation, a more robust cross-conforrastimator is the “Jackknife+” pro-
posed by Barber et al. (2021). In this case, the interval ionger centered on the prediction of
the fully trained metamodel, but the LOO predictions areeadith the empirical quantile. The
estimator is thus given by
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Er(x ) = [ 5o (x) £ RE0) ). @)

This estimator has thenarginal coverageroperty of 1— 2. As mentioned in Theorem 5 of
Barber et al. (2021), the factor “2” in £ 2« can be removed if the metamodel satisfies the
(e, A)-out-sample stabilityor e > 0 andA € [0,1] ifforall i € {1,...,n},

PG(X®) — G (XD)| < e) > 1-A. (24)

In this case, Theorem 5 of Barber et al. (2021) states thatth#ation of the Jackknife+ interval
[see Eq. (25)] achieves a marginal coverage of leveld— 2v/A. Hence, if one can find a small
enough value of\, which satisfies Eq. (24), then a marginal coverage of lappiroximately
1 — « can be achieved, leading to the following prediction set:

Clue (x0 ) = [35, {74 (X)) £ RECf & e). (25)

Nonetheless, the authors of Barber et al. (2021) indicag th numerical applications, the
empirical coverage of the Jackknife+ barely drops below & unless the case study is some-
what “pathological.” More recently, it has been establgsbg Liang and Barber (2023) that the
training-conditional property in Eq. (19) is achieved unttee out-sample stability property. In
most empirical cases, however, the marginal coverage groigeespected.

Another way of achieving the + « coverage is through the “Jackknife-minmax” method,
again proposed by Barber et al. (2021), which is a more cuatee implementation of the
Jackknife+ method. This method differs from the latter atoiés not use the prediction of each
LOO-trained metamodel but the minimum (resp., the maximpregicted value to compute
the lower (resp., the upper) confidence bound. The Jackkmifienax estimator is given by the
following expression:

aﬁ]:gzm(X(n—i-l)) = [mlnle{l)n} {/9\71 (X(n+1))} _ a\n—(x{RlLOO}’

maxicqs {3 (X)) 430, (RE0)]

An illustration adapted from Barber et al. (2021) of the was Jackknife methods can be found
in Fig. 2.

(26)

Jackknife Jackknife + Jackknife-minmax
~ 1 LOO H0
G(XHD)y & RE G_1 (XD 4 fLoo G (XFD) L REOO 5 (1)) 4 RLOO
e < 0 | —
- LOO
g(X(7z+l)) + RE {7,2(}(('”1)) + RéOO ﬁ,,,”,()((”'ﬂ)) 7]?5,()() f]\”,”’(X(n—l )+R£‘00
o ——> o> A — e~
g(X(nvl)) + RTLUU gﬂ(X(nJrl)) + R/‘LOO G (X)) RLOO Gmae(X (1) 4 RLOO
° ° S EE—— ] o
—~ ( ,+1:) LOO ~ : n L :
g™ _) + Ry Gon (XD £ gLOO Gonin (XTD) = REOO g, (X (1) + RECO
. — e — ¢ —>
A (x(n+D) A+ (X (ntD) Al —mm | x(nt1)
n+1 ( n ) —mm( n )
Ch.a(X ) Cha(X Cha X
LOO __ (i) Sy
Ry7Y = [g(X™) = g—i(X™)]
Grin(XD) = _min G 5(XD), Gnaa(X) = max g;(x)

FIG. 2: lllustration of the various cross-CP methods (adapted fBamber et al., 2021)
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Even if the Jackknife methods have a lower computationdltbas the full-CP, if one dis-
poses of a dataset with more than a few thousand observatipimsthe case where the meta-
modelyg is long to train, the cost of cross-CP methods can still beexpensive. A recap of the
different cross-CP methods mentioned with their coveragkecamputational cost can be found
in Table 1.

Finally, a major drawback of this CP method is that there ighemretical guarantee of
adaptivity. We recall that adaptivity (Romano et al., 20i9he property of a CP interval to
have nonconstant widths at different test points, and thopgrty is related to the expressivity
of the surrogate model studied. This topic will be addressdide following using GPs.

3. CONFORMALIZED GAUSSIAN PROCESS REGRESSION: THE J+GP METHOD
3.1 Motivations and Proposed Estimator

The idea is to adapt the Jackknife+ method to GP metamodelst&ain adaptive prediction in-
tervals. Suppose we have conditioned the GP on a dabadey optimizing the hyperparameters
(afALE, OmLe) of a Matérnv kernel with givenv. We thus have access to the posterior mgan
as well as the posterior standard deviation denoted.Bjor the respective LOO posteriors, we
write g_; andy_; forall i € {1,...,n}. We proceed in defining the LOO Gaussian nonconfor-
mity score, fixing a smab > 0, by

prooy . lo(X) - g’i(‘)_{(z)”, Vie{1,...,n}. 27)
1 max(s, 74 (X))
The interest ob is to avoid the zero division when the metamodel is intenada(e.g., in the
absence of a nugget effect). For a new prediction p#ifitt) ¢ X and a coverage rafd —
a) € (0,1), we define the “J+GP” conformal predictors, which are a vardd the Jackknife+
estimator adapted to the GP metamodeling setting:

CIEP(x (D)) = {é‘f,a{ﬁ_i (X("D) £ REOOY x max(é,fx_i(X("*l)))}]. (28)

This estimator enables adaptivity at different predicpoimts since the edges of the intervals are
controlled by a function o ("1, Moreover, for this estimator, we achieve the same marginal
coverage as the Jackknife+ as presented in the followirgy ¢me.

Theorem 1. AssumeD,, is exchangeable. For a new poiat("*D ¢ X and a coverage level
1-«€(0,1), one has

P (g(x0H0) € CIEP(X (D)) > 1 2u (29)
TABLE 1: Marginal coverage and reminder of both training and evadnatosts

for CP methods adapted from Barber et al. (2021denotes the training sample
size,ngiq is the cardinal of the output space, ands the size of the test sample

Method Marginal coverage Training cost Evaluation cost
Full >1—« 7+ Ngrid m - n - Ngrid
Split >1—-x 1 n
Jackknife+ >1-2x n m-n
Jackknife-minmax >1—« n m-n
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The proof is given in Appendix A and is baseditatis mutandisn the proof for the Jackknife+
in Barber et al. (2021). In the same spirit of Barber et al.2@0 we similarly propose the
following “J-minmax-GP” estimator:

", 0

Cam ) = ming (s (X)) =g, {0  max(5. 7 (X))}

ma {G- (X V)] 4,7 {R O x max(s,7- (x ("“)))}}

(30)
Notice that this CP estimator inherits from the same covegamrantee as the standard min-max
estimator, as shown by the following theorem.

Theorem 2. AssuméD,, is exchangeable. For a new poiit”t%) ¢ X and a marginal coverage
levelx € (0,1), one has

P (g(xXH0) € Crmer (X)) > 1 -« (31)

The proof of the preceding theorem is given in Appendix B amatiapted from the proof for the
Jackknife-minmax in Barber et al. (2021). The proposed tgapross-CP methods with their
coverage and computational cost are summarized in Table 2.

3.2 Methodology Evaluation

A two-step approach is considered to assess the capahiiftiee proposed J+GP and J-minmax-
GP estimators in comparison with the usual cross-CP onetharayesian credibility intervals.

In the following, letC.; , denote any type of prediction interval. The following cortgiions

are performed on the test subge},. First, we check whether the empirical coverage property is
achieved for different values of the coverage rate & < [0, 1]:

%i {g(XxD) e Cra(x)} 21w (32)
=1

Second, the correlation of the interval width and the modedrés computed. Indeed, for the
intervals to be informative, they have to be small when tredjation error is small and large
otherwise. Therefore, we could expect a significant calicelidetween the width of the interval
and the residual. This metric will quantitatively reflece thdaptive nature of the proposed pre-
diction intervals. It is thus valid to verify that, for a giveoverage + « € (0, 1), the Spearman
correlation on the test data is nonzero is significantlyedéht from O with a robustness analysis
using Bootstrap estimation, i.e., that

TABLE 2: Marginal coverage, training, and evaluation costs formitervals
proposedn denotes the training sample size, ands the size of the test

sample
Method Marginal coverage Training cost Evaluation cost
J+GP >1-2x n m-n
J-minmax-GP >1—« n m-n
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0< rspearma<{z (Cra(XD)), |g(x D) —g(x @)} . (33

ie{n-‘rl,...,n—i-m})
wherel (6‘,:‘,“()((“)) denotes the length of the prediction interval. Here, theaBpan corre-
lation is chosen since it is more robust than the Pearsoarlicarrelation coefficient to possible
outliers and because it is able to measure monotonic dependé is computed in a similar
fashion to the usual Pearson linear correlation, but it ickems the rank transformation of data.
To achieve statistical robustness, we compute bootsttapvads on the estimation of the corre-
lation metric.

Concerning the quality of the metamodel, it is assessedthtinelp of the usuadredictivity
coefficienttomputed from test data (Marrel et al., 2008):

L Jy(x0) g x0)
2 1 i=n+1
QR =1 T 1 5 (34)
n Z (g(X(i)) - Z?—1Q(X(j)))
=1 n

This metric is widely used for assessing the predictive paf¢he surrogate model and for en-
suring its validation (see, e.g., Fekhari et al., 2023). dlheer to 1 the)? is, the more predictive
the mean metamodel is. Here, the analysis can be completeshiyguting the empirical cover-
age rates and the correlations between the lengths of #neais and the residuals. Additionally,
this strategy provides a way for decisionmakers to evalwaieh model best suits their applica-
tions, since it can be used with different priors on the ciavare kernel and the mean to further
enhance the predictive power of the final metamodel. In theviing numerical examples, we
demonstrate the strength of our methodology by testingrab@P metamodels with different
values of Matérn regularity parameterand show that it allows one to discriminate between
them in order to choose the best one. We focus on Matérn lsdoreause they are widely used
in practice. However, this approach can be applied to oteerdt families as well.

4. NUMERICAL RESULTS

In order to test our methodology, a series of numerical tay ase cases are carried out. We
choose standard benchmark functions from the UQ and GRtlitex, as well as a real use case
from nuclear engineering provided by EDF, the French natiefectric utility company. In the
numerical results, all examples are treated as deterngini$ére, we suppose no noise in the
data, which amounts to performing GP interpolation. Thhs, g0-called nugget effect intro-
duced in Eg. (10) is not considered here. Our goal is to askeszdaptivity of the estimators
J+GP and J+GP-minmax using the Spearman correlation betiveesrrors of the metamodel
and the width of the prediction intervals.

As a preliminary step, standardization of the input dat@t®mmended. Since, in these ex-
amples, we have access to the input distributions, the gtmeenly consists of subtracting the
mean and dividing by the standard deviation. We start witlillastrative case of a misspec-
ified one-dimensional GP and then proceed with a detailedysbdfi three cases: namely, the
wing weight function (Forrester et al., 2008), the Morok&ftCaflisch function (Morokoff and
Caflisch, 1995), and an industrial use case provided by EBméd “TPD” for “THYC-Puffer-
DEPOTHYC" clogging simulation computer code; see Jabel. €2825) for more information
about this use case). We start by going over the charaatsrigtthe computer experiments used
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and present the performance of each GP metamodel by corgptgipredictivity coefficient
[recalled in Eq. (34)] and thmean squared errofMSE) given by

1 . i
MSE = — (XY — g(Xx@)]°,
=D [a(x ) —g(x )] (35)
1=n-+1
For each dataset, we present the performances of the diffprediction intervals, namely the
GP credibility intervals and the proposed J+GP and J-min@BBxestimators. Three indices
based on the prediction intervals are computed on the tésseta

e the empirical coverage rate given in Eq. (32);
e the empirical average width:

1Cra) = - 30 (Cru(XD)); (36)
=1

e the Spearman correlation between the width and the errgiyas in Eq. (33).

We compute the three metrics at all coverage levelsd and display the plots for the Matérn
kernel associated with the best performance. Then, we shbles for three different target-
coverage levels (i.e., 90%, 95%, and 99%) and three diffdvtatérn regularity parameters,
such thatv € {1/2,3/2,5/2}.

In the rest of this section, we highlight in a series of tabfes each empirical coverage
rate mentioned above, the target coverage rate, the kehweleAGP metamodel has the smallest
average width, and the metamodel with the highest Spearmaelation (i.e., the correlation
between the width of the interval and the residual error)geéneral, it is not the same kernel
that performs best on both metrics. In this case, the dexisader must choose between more
sensitivity to local information or more conservatism, eleging on the intended application.

4.1 Code Description and Availability for Reproducible Results

The numerical results have been obtained with a Python coitteupon two preexisting open
source libraries: namely, OpenTURNS (Baudin et al., 200hjch is dedicated to UQ (espe-
cially, GP regression), and MAPIE (Cordier et al., 2023)jahhis dedicated to CP. A wrapper
around OpenTURNS has been implemented to make the Sciit-i@edregosa et al., 2011)
GP constructors (i.e., witfit and predict methods) compatible with OpenTURNS'’s existing
application programming interface since MAPIE handledsbcikit-learn objects. Only a few
changes have been made to the MAPIE library to make it cotvpatiith our methodology, and
it preserves all of its standard conformal methods. Foragpeibility purposes, the code can be
found on the following GitHub repository: https://githabm/vincentblot28/conformalizeghp.

4.2 Numerical Results
4.2.1 lllustrative Function with Misspecified GP

To illustrate the performance of the J+GP prediction irdésin the misspecified case, we create
an artificial function with an oscillatory regime and a satiscontinuity within its domain. To
do this, we define the following one-dimensional functiondfos [—10, 10]:

sin(z), if z>1
flx) = { (37)

—x, if xgll

Journal of Machine Learning for Modeling and Computing



Conformal Approach for GP Surrogates 51

We use 10 points for training and 90 for estimation on a 10@4hbscretization of the interval.
We use zero-mean prior on the mean and a squared-exporantial and optimize the kernel
hyperparameters. The resulting GP and predictive interva illustrated in Fig. 3. In this case,
the GP is intentionally designed to be misspecified, resylth Bayesian credibility intervals
for < 0 that fail to capture the true values of the function. In casit, the J+GP prediction
intervals have a more conservative size and, due to theptadaess, successfully capture a
larger portion of the true values of the functignThis adaptiveness is absent in the classical J+
prediction intervals, which remain nearly constant acedksmput regions, as can be seen in the
right-hand side plot. This example clearly demonstrates tte J+GP prediction intervals are
more robust in quantifying prediction uncertainty when @i model priors are misspecified.
Moreover, the adaptive sizing of these intervals makes thmare informative in local regions
with denser training points, as seen in the region where0.

4.2.2 Performance of the Trained GPs

In Table 3, we present the different dataset sizes and tleepeges used for training and testing.
For the three different Matérn regularity parameters,ctreesponding predictivity coefficients
and mean squared errors are displayed.

4.2.3 Wing Weight Function

The wing weight function was proposed in Forrester et al080It is an analytic function
with 10 independent input variables representing the dgsigameters of the wing and a scalar
output representing the weight of the wing. This engingpniodel is representative of a Cessna
C172 skyhawk wing aircraft and is used for UQ benchmarksereigrospace field. If we denote
the inputs asX = (X3, ..., X10), the function is given by

X 0.6
(X) -0 03qX )0.758(X )0.0035 3 (X )0.006
g = L. 1 2 782 5
coF(X4)
os (38)
0.0af 100x X7 0.49
X (X6) —_— (Xng) + X1X10.
coq Xy)
Posterior GP Credibility Interval Prediction Interval J+ Prediction Interval J+GP
10 Sosterior GP Credibility Interval 10 Prediction Interval J+ 10 BN Prediction Interval J+GP
. + Training points ) Training points Training points
‘ True function 8 True function 8 True function
6 Mean of posterior GP p Mean of posterior GP Mean of posterior GP
5
6
1l
! o
> > =
2 9 5
— N .
0 X 0 N b N ‘\
—2 -2 )
-1 —4 4
~10 5 0 5 0 —10 5 0 5 0 —10 5 0 5 0
X X X

FIG. 3: Misspecified GP metamodel—with a squared-exponentialdterof illustrative functionf. The
function f, as well as the training points and the resulting mean pradiare plotted. On the left the
posterior credibility intervals for + « = 90% are plotted. In the middle the J+ prediction intervatsiie
same coverage level are plotted. On the right, for the sawmerage level, the J+GP predictive intervals are
obtained from our methodology.
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TABLE 3: Summary of the performance metrics of the GP

metamodels
Wing Morokoff &
TPD
M Weight Caflisch
d 7 10 7

L N 600 600 1000
% train 75 75 80
% test 25 25 20

12 Q2 0.993 0.928 0.990
MSE 16.32 219 x 1073 1.46

3/2 Q? 0.998 0.940 0.996
MSE 2.65 180 x 1073 0.54

5/2 Q2 0.999 0.937 0.997
MSE 0.82 189x 102 0.46

The response variabl€ is obtained by ) = (X)), wherex ) = (x\V ... x{)) for all

i € {1,..., N}, drawn using Monte Carlo sampling according to uniform aituility distribu-
tions whose marginal supports are given in Table 4. The g¢eedataset consists &f = 600
realizations. We optimize the GP hyperparameters by MLE ®% of the points and use the
remaining samples to test our methodology.

In the results presented in both Fig. 4 and Table 5, the diitgibtervals of the GP are larger
than those of the conformal methods, thus providing engdidoverage higher than the desired
one for all target coverage levels. The GP interval size asetion of the coverage leveH« is
monotonically increasing since it is driven by the monotooemal quantiles; /> in Eq. (12).
Therefore, the ranking of the interval sizes does not chaanggbthe Spearman correlation index
remains constant for the GP intervals, as can be seen in themplthe right side of Fig. 4. It
is noteworthy that the J+GP conformal predictor in Fig. 4ieabs the smallest interval width
and has, on average, the same Spearman correlations as trediHlity intervals between its
lengths and the metamodel approximation error. The J-nir@R achieves an even better aver-
age correlation of the interval width with the error, at tikp@nse of being more conservative in
size. In Table 5 we can see that the Matérn kernel with thelaeity parameter = 5/2 achieves
the smallest width and the best Spearman correlation. Mapeitantly, the sizes of the adaptive
CP intervals are smaller than the GP credibility intervald do not require any other hypothesis

TABLE 4. Supports of the uniform marginal input
distributions for the wing weight function
Component Domain  Component Domain
X1 [150 200 X6 [0.5,1]
X, [220,300 X7 [0.08,0.18|
X3 [6,10] Xg [2.5, 6]
X4 [—10, 10 Xq [170Q 2500
Xs [16, 45] X10 [0.025,0.08]
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——  GP Credibility Interval
— J+GP

J-minmax-GP
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FIG. 4: GP metamodel of wing weight function with Matérn-5/2 kdreenpirical coverage (with the
1 — a and 1— 2« marginal coverage in dotted lines), average width size, 3pehrman correlation of
the approximation error with the interval lengths for J+G#inmax-GP, and GP credibility interval, as a
function of the target coverage

TABLE 5: Wing weight analytical function. Empirical coverage rateerage width, and
Spearman correlation for different predictive intervadtafdard Bayesian credibility, cross-
conformal, and the proposed estimator) for different Matéernels and for three confidence
levels. In purple and underlined: the empirical coverageest to the target coverage in absolute
value. In red and bolded: lowest widths and highest Speacuaelations obtained under the
target coverage condition

hod i Coverage Average Width Spearman Corr.
Method — Matem| 50, 9505 09%| 90% 95% 99%| 90% 95%  99%
GP 1/2 |0.983 1.000 1.000|27.313 32.545 42.7720.198 0.198 0.198

Credibility ~ 3/2 |1.000 1.000 1.00011.319 13.487 17.7250.326 0.326 0.326
intervals 52 | 1,000 1.000 1.0006.296 7.502 9.859 0.351 0.351 0.351
1/2 | 0.917 0.958 0.992|12.922 18.227 32.359-0.079 —0.092 —0.155

I+ 3/2 |0.925 0.9750.992| 5.660 8.523 14.0840.127 -0.046 —0.243
5/2 |0.933 0.9750.992| 3.337 5.006 7.9330.188 -0.172 —0.161

1/2 | 0.917 0.958 0.992|14.231 19.545 33.7920.309 0.309 0.309

J-minmax  3/2 |0.942 0.983 1.0006.563 9.463 15.1010.349 0.349 0.349
5/2 |0.967 0.983 1.0003.945 5.653 8.576 0.341 0.341 0.341

1/2 | 0.917 0.950 0.992|11.962 16.731 28.4580.198 0.188 0.205

J+GP 3/2 |0.982 0.967 1.00d 4.997 6.786 10.8850.326 0.328 0.321
5/2 |0.933 0.967 1.0002.993 3.865 6.20% 0.349 0.352 0.348

1/2 | 0.917 0.958 0.992|13.208 18.048 29.8250.333 0.307 0.274
J-minmax-GP 3/2 | 0.942 0.983 1.0005.881 7.685 11.7460.361 0.346 0.339
5/2 |0.975 0.992 1.0003.591 4.495 6.83%0.382 0.372 0.363

for interpretation. The good fit of the Matérn-5/2 couldealdy be seen when inspecting thé
but the study of the prediction intervals allows for a compdaitary uncertainty evaluation that
does not require any further hypothesis for interpretafemin the case for the interpretation
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of the Bayesian credibility intervals). The proposed mdthtso outperforms the standard J+,
J-minmax cross-conformal approaches, as can be seen feomeghlts in Appendix C, where
the J+ interval lacks any adaptivity, and the J-minmax iscmaservative.

4.2.4 Morokoff & Caflisch Function

The second example is the Morokoff & Caflisch function (Masffland Caflisch, 1995), defined
on the unit hypercubf®, 1]¢ by

x)=2(1+1 T X;)¥4 39
g(>—2(+d)iHl(z>. (39)
We choosel = 10 and useV = 600 samples drawn according to the multivariate normatidist
bution (0, C) with the variance-covariance matiX described in Acharki et al. (2023). We
observe in the middle plot of Fig. 5 that the GP credibilitievals have a relatively small aver-
age width size at all target coverage levels. This size isetyofollowed by the J+GP estimator
and becomes larger than the GP intervals after a certairagedevel threshold. However, it
should be noted that the GP empirical coverage does not thadfigh target coverage levels as
seen in the left plot of Fig. 5. This indicates a possible pgs#fication of the metamodel since
the empirical coverage here estimates the training-ciomaik Gaussian credibility interval in
Eq. (12).

We observe a similar behavior for the Spearman correlatorilie Morokoff & Caflisch
function as for the wing weight function. Namely, the J+GBdiction interval has, on average,
about the same size and error correlation properties as fher&libility intervals. We still
observe that the J-minmax-GP conformal predictor has monsearvative interval sizes and
stronger correlations. As can be seen in Appendix C, thetagap-GP and J-minmax-GP cross-
conformal predictors have improved performance comparditkir nonadaptive counterparts.

As can be seen in Table 3, the predictivity coefficient is Hyhall three regularity param-
eters, with only a small variation between= 3/2 andv = 5/2. The proposed methodology is
of particular interest here for completing the GP prior tona discrimination. In Table 6, under
the target coverage levels 90%, 95%, and 99%, the Mat&oBperforms the Matérn-5/2. The
J+ has the smallest width for the 99% target level, but itsrazorrelation is very low.

1th

——  GP Credibility Interval
| —— J+GP [

J-minmax-GP |

N\
brediction set wid

010

Empirical coverage
|

o)
S
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Spearman correlation

T
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0.0 z 0.00
0.0 0.2 0.4 0.6 0. 1.0 0.0 0.2 0.4 0.6 0, 1.0 0.0 2 0.4 0.6 0.8 1.0
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FIG. 5: GP metamodel of Morokoff & Caflisch function with Matérn23{ernel empirical coverage (with
the 1— « and 1— 2« marginal coverage in dotted lines), average width size ggah®nan correlation of
the approximation error with the interval lengths for J+Ginmax-GP and GP credibility interval, as a
function of the target coverage.
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TABLE 6: Morokoff & Caflisch analytical function. Empirical coveragate, average width,
and Spearman correlation for different predictive intés{atandard Bayesian credibility, cross-
conformal, and the proposed estimator), for differentéfiatkernels, and for three confidence
levels. In purple and underlined: the empirical coveragsest to the target coverage in absolute
value. In red and bolded: lowest widths and highest Speaxueelations obtained under the
target coverage condition

Method  Maté Coverage Average Width Spearman Corr.
ethod  Matem| 900, 9506 99%| 00% 95% 99%| 90% 95%  99%
GP 1/2 | 0.925 0.958 0.9830.161 0.192 0.252| 0.258 0.258 0.258

Credibility ~ 3/2 | 0.867 0.917 0.9750.119 0.142 0.1870.257 0.257 0.257
intervals 52 | 0.842 0.900 0.9500.108 0.129 0.170 0.241 0.241 0.241
1/2 | 0.875 0.942 0.992| 0.128 0.182 0.305(-0.215 0.012 0.096

I+ 3/2 | 0.883 0.975 0.992| 0.134 0.1710.288| 0.132 —-0.155 —0.070
5/2 | 0.892 0.942 0.9830.136 0.175 0.2820.084 0.199 0.001

1/2 | 0.900 0.950 0.992|0.144 0.197 0.321] 0.132 0.132 0.132

J-minmax  3/2 |0.967 0.9750.992| 0.158 0.195 0.3090.283 0.283 0.283
5/2 | 0.942 0.975 0.992| 0.164 0.201 0.310 0.238 0.238 0.238

1/2 |0.875 0.942 0.9830.122 0.175 0.292| 0.252 0.254 0.257

J+GP 3/2 | 0.875 0.958 0.9830.125 0.158 0.271| 0.254 0.264 0.259
5/2 | 0.900 0.958 0.983 0.132 0.172 0.238 0.243 0.248 0.230

1/2 |0.883 0.958 0.992| 0.137 0.190 0.309| 0.253 0.261 0.272
J-minmax-GP 3/2 |0.933 0.975 0.992| 0.150 0.182 0.297 0.317 0.318 0.305
5/2 | 0.942 0.983 0.9830.160 0.202 0.265%0.285 0.276 0.273

4.2.5 Industrial Use Case: The THYC-Puffer-DEPOTHYC Code

The following industrial use case is related to the issudarfging in steam generators of pres-
surized water nuclear reactors (Prusek, 2012). Over tineesteam generators of some reactors
may face the challenge of clogging, a deposition phenomtrairincreases the risk of mechan-
ical and vibratory stresses on tube bundles and internadtsiies. It also affects their response
during hypothetical accidental transients. To make masree planning more robust, EDF
R&D has developed a multi-physics computational chain rehifiél Y C-Puffer-DEPOTHYC”
(TPD). This numerical tool uses specific physical modelsfraduce the kinetics of clogging
and to generate time-dependent clogging rate profiles fxip steam generators (Feng et al.,
2023; Prusek, 2012). Some input parameters of this codeubjecs to uncertainties. To better
understand the sensitivity of the output uncertainty withpect to the input variability, a meta-
modeling methodology based on polynomial chaos expansindsadvanced global sensitivity
techniques has recently been proposed in Jaber et al. (28288, it is assumed that we dis-
pose of a dataset of $Monte Carlo simulations, witli = 7 independent input variables to
predict the clogging rate at a given time. The probabilitidbutions of the inputs are listed in
Table 7. More information about the physical nature of théaldes can be found in Jaber et al.
(2025).
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TABLE 7: Distributions of the input variables of TPD

Component Distribution Component Distribution
X1 N(1016,4.0) X5 7(0.5,5.0,10.0) x 10~
X2 N (0.0233 0.0005 X6 T(1.0,4.5,8.0) x 10°°
X3 7(0.2,0.3,0.5) X7 7(0.1,7.8,12) x 1074
Xa 7(0.01,0.05,0.3)

The results of the analysis are detailed in Table 8. The ptigdicapability of the pos-
terior GP metamodel proves to be extremely higif (> 0.99) for all regularity parameters,
making it again challenging to find the optimal candidate d&ermine what leads to a robust
GP metamodel of TPD to speed up industrial studies on clgggire different conformal pre-
dictors reveal an advantage for a GP employing Matérn-B(2Matérn-5/2 prior kernels. As
seen in Fig. 6, the GP credibility intervals show poor cogereates above the target coverage
threshold of~ 0.8. The J+GP also shows poor empirical coverage abovexl= 0.5. This
result is explained by Theorem 1 since coverage is only gueed above - 2«, and it is

TABLE 8: THYC-Puffer-DEPOTHYC analytical function. Empirical cerage rate, average
width, and Spearman correlation for different predictivieivals (standard Bayesian credibility,
cross-conformal, and the proposed estimator), usingwaiitatérn kernels and three confidence
levels. In purple and underlined: the empirical coveragsest to the target coverage in absolute
value. In red and bolded: lowest widths and highest Speacoeelations obtained under the
target coverage condition

Method  Maté Coverage Average Width Spearman Corr.
o SN 9006 950 99%| 90% 950% 99%| 90% 95% 99%
GP 1/2 0.960 0.975 0.975| 4.717 5.621 7.387| 0.463 0.463 0.463

Credibility 3/2 | 0.915 0.940 0.950 2.000 2.384 3.1330.353 0.353 0.353
intervals 5/2 | 0.850 0.885 0.945 1.632 1.944 2.5550.281 0.281 0.281
1/2 | 0.855 0.900 0.975| 2.438 3.610 7.391| 0.266 —0.223 0.132

J+ 3/2 | 0.840 0.905 0.975 1.529 2.031 3.943-0.355 0.043 0.202
5/2 | 0.840 0.920 0.965 1.353 1.836 3.109-0.052 0.301 0.273

1/2 | 0.860 0.920 0.975| 2.763 3.943 7.711| 0.666 0.666 0.666

J-minmax 3/2 | 0.890 0.920 0.980 1.857 2.350 4.260 0.653 0.653 0.653
5/2 | 0.905 0.950 0.980| 1.763 2.233 3.505| 0.606 0.606 0.606

1/2 | 0.845 0.895 0.975| 2.314 3.198 6.367| 0.469 0.466 0.458

J+GP 3/2 | 0.840 0.925 0.955 1.523 2.058 3.215 0.351 0.345 0.352
5/2 | 0.845 0.905 0.970 1.509 2.072 3.689 0.279 0.280 0.288

1/2 | 0.870 0.920 0.975| 2.638 3.523 6.700| 0.617 0.592 0.546
J-minmax-GP 3/2 | 0.900 0.950 0.985| 1.852 2.387 3.543 0.519 0.489 0.449
5/2 | 0.895 0.960 0.995| 1.918 2.477 4.080| 0.424 0.390 0.349
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FIG. 6: GP metamodel of TPD dataset with Matérn-3/2 kernel emgidoverage, average width size and
Spearman correlation of the approximation error with theriral lengths for J+GP, J-minmax-GP, and GP
credibility interval, as a function of the target coverage

visible here on the TPD use case. These empirical coveragltigare conditioned on the train-
ing dataset.

Therefore, to properly check the lower bound, it would beassary to average all permuta-
tions of the train-test dataset to fully account for thisutesSuch scenarios where the coverage
is strictly between 1 2« and 1— « are rather rare for standard J+ (as explained in Barber,et al.
2021). However, the low empirical coverage rate observethtocredibility intervals may signal
misspecification, and thus their interpretation may notdhialle for quantifying the metamodel
uncertainty. Knowing this fact, the J+GP has smaller awemigiths and the same average cor-
relation as the GP credibility intervals; these charasties have already been observed in the
previous examples. The J-minmax-GP also has strongelatiores at all coverage rates, but the
average width is larger than both the credibility intenaatsl the J+GP. The correlation variation
J-minmax has a different profile here, being regular and rwonically decreasing, whereas, in
the previous examples, it was shaped as a parabola. Thid beutéxplained by the presence
of more data . = 10°) and perhaps better regularity of the sample. In particttar standard
J-minmax estimator shows a remarkable degree of adapthgtgeen in Table 8, especially for
the coverage rates of 90% and 95%, surpassing the corredatiotained with the unreliable
Bayesian credibility interval widths. Therefore, in terofsapplications for speeding up indus-
trial uncertainty studies of clogging, the GP metamodehwitro mean and Matérn-5/2 kernel
optimized by MLE can be considered as the best candidatedtamodeling TPD.

4.3 Synthesis of the Results

We have shown that for a given target coverage, studying\beage width of the prediction
intervals and their Spearman correlation with the errorowups the evaluation of the metamodel
quality. This has been numerically exemplified on two défer deterministic analytical UQ
functions and on a complex industrial use case based on ickaitrial computational chain,
for which the selection of different metamodels, e.g., tfedént Matérn kernels, on the sole
basis of the&)? is not fully conclusive. The proposed new cross-conform@R estimator yields
smaller widths on average while keeping the correlationidftvg with the metamodel error close
to that of the Bayesian credible intervals, and the J-min@&xachieves better correlations than
the standard Bayesian credible intervals at the cost obfargervals. We further show that
inspection of our hypothesis-free CP intervals can helphimosing a more robust prior kernel
for the GP metamodel of a computer code.
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5. CONCLUSION AND PERSPECTIVES

In this work, we explore the idea of “conformalizing” metadats based on GP regression in the
cross-conformal prediction paradigm in order to make GRametel evaluation more robust for
industrial applications. The idea is to make GP metamodel®meliable to improve prediction
in the context of possible misspecification. To this end, depa the classical LOO nonconfor-
mity score by weighting it with the local GP posterior starbdeviation. This method allows
the CP intervals to have a better adaptivity, thus havingffardnt interval span for different
new test points. Moreover, the proposed J+GP predicti@rniat enjoys the same theoretical
marginal coverage property as the Jackknife+ one and itsnmaix variant proposed by Bar-
ber et al. (2021). In order to quantify this adaptivity of fhrediction interval, we evaluate the
Spearman correlation between the width of the intervalglamdbsolute value of the metamodel
approximation error. We show that our method achieves @&battaptivity than both standard
cross-conformal prediction methods and GP credibilitgivals.

We demonstrate the potential application of our methodofogGP model selection among
different prior regularity parameters for the Matérn leds Furthermore, we show how the pro-
posed methodology can help to evaluate the validity of a GRamedel for industrial appli-
cations through a real use case related to nuclear engigeéifuture line of research would
be to generalize this methodology to families of deterntimimetamodels, such as polynomial
chaos expansions, which do not naturally come equippedanitimherent stochastic structure
like GPs, or to more general statistical models that comle avguantifiable notion of dispersion.
Moreover, recent work by Pion and Vazquez (2024) shows tirat-eGP estimator generally out-
performs the full-conformal approach and other varianth@setting of Gaussian interpolation
(i.e., GP regression without the nugget effect).
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APPENDIX A. PROOF OF THEOREM 1

We prove a more general version of the theorem. We assume/¢hate in a regression setting,
and we use a modglthat has an estimator of its standard deviatidX' ). Moreover, we show
that a slight modification of the scaled nonconformity scbyetaking powers3 > 0 of the
standard deviation does not change the main results [sugkrpaare used in Papadopoulos
(2024) in the full-conformal setting]. For GPs, the predids the posterior meaj = g, and the
estimated standard deviation is the posterior covarianeey.

Proof. Assume that

with € representing noise, and that a statistical learning mgdetrained on the datasét, =
{(X®,y@)n . Let (XD y(+D) € X x Y be a new point. We denote 19,1 :=
DU {(XHD Y)Y Letg ;) Vi # j € {1,...,n+ 1} be the statistical learning
D \{(XD,Y®) (X0 Y))}. By exchangeability we have thgt ; ;) = g_(;;) and
9-i = g—(in+1)- Let us denote byAr(X(i)) an estimator of the standard deviationgoind
assume without loss of generality that> 0 and similarly for the corresponding LOO (we could
take the max function with a small > 0 otherwise). Similarly, as for the Gaussian nonconfor-
mity score, we define

vy _g(x @
RiLOOG — { — g( : )| . (A2)
U—Bz' (X(Z))
We then proceed and defidee M, 1(R) as
400 if i=j,
Rij = (A.3)

}y<i>,§_(i7j)(x<i>)|/af(i,j)(xw) if % j.

For simplifying the notations, we will now fif = 1. We proceed in defining the matrik ¢
Mn-i—l({ov 1})
Aij = 1{Rij > Rji}. (A4)

It can be easily observed that; = 1 & A;; = 0 except wherj = i. The strange set associated
to Aforx e (0,1)is

n+1
SA)=Sief{l,...,n+1}: > A;>(1-a)(n+1),. (A.5)
J=1,j#i

In other words, a point is strangeif the residualR;; compared withR;; for all j # i is larger
for a given fraction of comparisons.
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We start by bounding the cardinal 61 A4). Let ¢ be a strange pointd;; = 0 for at most
a(n + 1) — 1 other strange pointssinceA;; = 1 for at least{1 — «)(n + 1) andi # j. Let
s = |S(A)]; we now group pairs of strange points By, = 0. For a chosen point there are
at mosts possibilities for the strange poirit and for each oned;; = 0 at most(n + 1) — 1
times. Thus there are at mask («(n + 1) — 1) pairs of strange points.

We can now bound the number of ways we can choose two poigtéAn, and we obtain
‘9(57;1) < sx (a(n+1) - 1), (A.6)

and rearranging:
s <2a(n +1). (A7)

By assumption, the datasg, ; is exchangeable. Thus, using permutation matriceshich
maps & € {1,...,n+ 1} ton + 1 (such thall; ;1 = 1), we prove that

P(n+1€ S(A) =P(j € S(MAIL")) = P(j € S(A)). (A.8)
Therefore, any point is equally likely to be strange. We h#ven:
n+1
, E[lS(A)]]
= — _ 7 <
P(n+ 1€ S(A)) RH;PQ € S(A)) i1 S 2 (A.9)

We can now reconnect with the definition of prediction ingdsvWe denote the generic version
of our proposed J+GP prediction interval as

a;’“(X(n-i-l)) — [qAnj,[a{ﬁ—i(X("“)) + RLOO7 a_i(X(n-l-l))}]' (A.10)
Let us suppose that+1 ¢ C* . Then, for at leastl — &) (n + 1) valuesi in {1,...,n+1},
we have
Y(n+1) > §—i(X(n+1)) + RiLOOc « 6\',1- (X(n-i-l)), (A.ll)
or
Y(n+l) < ﬁﬂ' (X(n+l)) _ RiLOOcr > 6',1' (X(n+l)) (A12)
Finally, we can compute:
n+1
L-w)n+1)<y 1{Y<"+1> ¢ g_i(X("HD) £ RIOO° x 5_, (X<"+1>)}
i=1
n+1
_ Z 1{RiLOOG « 6—1’ (X(n+1)) < |Y(n+1) - E_i(X(n+1)) |}
i=1

n+1 ‘Y(n+l) _ ?ﬁi(X(n+l))| }

_ 1 RiLOOO' < _
3o D)

ntl @) 5 (x® (n+1) _ 5 (x(n+1)
_Zl{‘y g(X)| _ ¥ g-+(X )\}

SL(X®) T G (xm)

i=1

n+1 n+1
=> YRini1 < Ruyri} =Y Anjris
i=1 i=1
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where the last equality above is obtained with the idestiie; (X V) = G_; ,,11)(X V) and
G-i(XD) =G_(5.n40) (XD). Thereforen + 1 € S(A4) and:

P(g(X("+1)) ¢ 6;_“()((”“))) <P(n+ 1€ S(A)) < 2a. (A.13)
O

APPENDIX B. PROOF OF THEOREM 2

Proof. Assume the same hypothesis as in the previous theorem, anthke use of the same
definitions and notations. We define the mafixc M, 1(R) as

7 {+oo if i=j, 61
ij = ~ . . :
Rij X 0_(4,5) (X(n+l)) if 4 75 B

We redefine the matrid € M,,1({0,1}):

Aij = 1{minj/ Eijl > Eji}! (BZ)
where miry, Eij/ is the smallest residual for the poinvhen leaving out any pointe {1, ..., n}.
We start by bounding the number of strange points, choose:
i, € argmi minjfﬁijf}. (B.3)
i€S(A)

We can observe that for all strange poifits S(A), the matrix element;_; is null. Indeed,
this is because by definition,

Vj € S(A), Rj;, >miny R, >min R, . (B.4)

We can then easily bound the number of strange points udsiagS(A):

n+1
n1-|S(A) >3 Ay > 1- a)(n+1), (8.5)
j=1
and a rearrangement gives
IS(A)] < aun +1). (B.6)

Using the exchangeability property in the same fashion@agtaceding proof, we have
P(n+1eS(A) < a (B.7)

Let us suppose now that"*+1) ¢ Cx m"max Then, for at leastl — «)(n + 1) valuesi in
{1,...,n+ 1}, we have

Y(n+1) > maxi:L.“,n@\_i(X(n-&-l)) + RiLOOG % a—i (X(n-i-l)), (58)

or
y(n+1) minizl,...,nﬁ—i(X("“)) _ R-OO° G, (X(n-i-l)). (B.9)
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We denotefmin(X @) = minj—y_,g_;(X@), and similarly forgmax and R; (X ") :=
RFO0% x G_; (X (V) Finally, we can compute:

1-a)(n+1)
n+1

< Zl y(n+d) ¢ [Emm(X(nH)) — R (X(n+l))’ /g\maX(X(n+l)) R (X(n+l))}}
i=1

=) liaminj—y 7
I )
n+1 }Y(n+l) -3 . (X(n+l))}
_ in —(n+1,5) ~ (n+1)
= 1 _ iy (X
D R Mo § <L) X O (nt1) ( )
YO —G i X (9 N
} _ 9—( +1)(E) )} X G (i.mt1) (X("H))
G—(z n+1) (X )
n+1
=> l{m'nJﬂ ----- Rt % O (i) (X)) 2 Rigs X G- i) (X er))}
i=1
n+1 _ B
= Z 1{minj:1,...,an+1,j > Ri,n—i—l}
i=1
n+1
= Z An+1,i-
i=1
Thereforen 4+ 1 € S(A), and we conclude as in the preceding theorem. O

APPENDIX C. ADDITIONAL RESULTS
APPENDIX C.1 Branin Function

The Branin or Branin—Hoo function is a two-dimensional acélinction defined as
F(X1, X2) = a(Xz — bXZ + Xy — 1)’ + s(1— ) cog Xy) + 5, (C.1)

where the parameters are chosemas 1, b = 5.1/(4x2), ¢ = 5/7, r = 6, s = 10, and
t=1/(8n).

This function is effectively learned by Matérn GPs, as ewiced by the very higp? val-
ues in Table C1. Despite the excellent predictivity coedfitj it is important to note that the
Bayesian credibility intervals are quite large, resultim@ high level of empirical coverage. The
J+GP method, on the other hand, provides significantly inguldJQ through narrower interval
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TABLE C1: Summary of the performance metrics

of additional GP metamodels

v Branin Hartmann-3D
d 2 3
o N 1000 1000
% train 80 80
% test 20 20
1/2 Q? 0.999 0.918
MSE 6x 101 3x 103
3/2 Q? 0.999 0.930
MSE 2x 103 2x 108
59 Q? 0.999 0.932
MSE 2x10°° 2x10°°

widths. As shown in Table C2, the Matérn-5/2 kernel achsetle smallest average interval
width for critical coverage rates. In addition, the metaelodsiduals show a strong correlation
with both the GP credibility intervals and the interval widiNotably, the regular J-minmax

method also shows a high level of correlation, further \atlit the quality of the Matérn-5/2

prior choice. In the middle plot of Fig. C1, it is evident thae J+GP average interval width is
significantly smaller compared to the GP credibility intgdss

APPENDIX C.2 Hartmann-3D Function

The Hartmann-3D function is defined as

4
F(X1, X2, X3) = = Y _oexp| — Y Ai;(X; — Py)? |, (C.2)
i=1 j=1
where
1.0 3.0 100 300 3689 1170 267
1.2 0.1 100 350 4699 4387 747
o= ., A= , P=10"* . (C.3)
3.0 3.0 100 300 1091 8732 554
32 0.1 100 350 381 5743 882

The function is effectively learned by a GP, as evidencedbyhighQ? values in Table C1.
The Matérn-1/2 kernel shows the strongest correlatianhjghlighted by the regular J-minmax
interval in Table C3, underscoring the adaptiveness of ¢hiss-conformal method. Similar
conclusions hold for the Hartmann-3D GP metamodel: Bayesiedibility intervals are overly
optimistic, with very large widths and excessively high eage rates. As shown in Fig. C2, the
conformalized GP prediction intervals (J+GP and J-min@&)-achieve much narrower widths
compared to their Bayesian credibility counterparts.

APPENDIX C.3 Comparison with Standard CP Intervals
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TABLE C2: Branin analytical function. Empirical coverage rate, agr width, and Spearman

correlation for different predictive intervals (stand&alyesian credibility, cross-conformal, and

the proposed estimator), for different Matérn kernels fom three confidence levels. In purple

and underlined: the empirical coverage closest to the tamerage in absolute value. In red

and bolded: lowest widths and highest Spearman correkatibtained under the target coverage
condition

Method Maté Coverage Average Width Spearman Corr.
etho AN 9006 0506 99%| 90% 95% 99%| 90% 95% 99%
GP 1/2 | 0.995 0.995 1.000| 7.992 9.523 12.515 0.607 0.607 0.607

Credibility ~ 3/2 | 1.000 1.000 1.000 0.418 0.498 0.65% 0.568 0.568 0.568
intervals  5/2 | 1,000 1.000 1.000 0.039 0.046 0.061 0.505 0.505 0.505
1/2 | 0.915 0.965 0.990| 0.875 1.873 7.466| 0.118 —0.086 0.089

I+ 3/2 | 0.935 0.9750.990| 0.039 0.103 0.354 0.230 0.309 0.033
5/2 | 0.955 0.9750.990| 0.006 0.013 0.034 0.890 0.450 0.469

1/2 | 0.930 0.965 0.990| 1.049 2.048 7.639 0.737 0.737 0.737

J-minmax  3/2 | 0.970 0.9800.990| 0.053 0.116 0.368 0.855 0.855 0.855
5/2 | 0.980 0.9850.990| 0.010 0.017 0.039 0.878 0.878 0.878

1/2 | 0.920 0.955 0.990| 0.797 1.666 6.554 0.606 0.605 0.603

J+GP 3/2 | 0.935 0.975 0.995 0.037 0.083 0.297 0.577 0.569 0.569
5/2 | 0.955 0.970 1.000 0.005 0.009 0.024 0.579 0.570 0.537

1/2 | 0.935 0.965 0.990| 0.971 1.840 6.742 0.816 0.777 0.678
J-minmax-GP 3/2 | 0.975 0.980 0.995 0.051 0.097 0.31] 0.759 0.703 0.627
5/2 | 0.985 0.985 1.000 0.010 0.013 0.029 0.745 0.704 0.621

1.0 = I,
= —— GP Credibility Interval N
= v 0.9 A
g~ — J4+GP = 1
g Z o N 5 v
5008 o J-minmax-GP = ~
< 5] = N
o 93] — 0. N\
9/3 — L AN
S 06 2 3 \
~ P S | \
= / =00 =0 ‘ \
S S = ,
-0 / ] = Il \
5 /. z g
2, 002 = §
= /7 ) D 06 \
S5 V 2 /| a \
/?/ 00 / 2 \
S Z - e
0.0+ / R _ 0.5
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0 0.0 0.2 0.4 0.6 0.8 1.0
Target coverage 1 - « Target coverage 1 - « Target coverage 1 - a

FIG. C1: GP metamodel of Branin function with Matérn-5/2 kernel émgpl coverage (with the -

o« and 1— 2« marginal coverage in dotted lines), average width size, $mglarman correlation of the
approximation error with the interval lengths for J+GP, ilnmax-GP, and GP credibility interval, as a
function of the target coverage.
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TABLE C3: Hartmann-3 analytical function. Empirical coverage raeerage width, and
Spearman correlation for different predictive intervaedsa(idard Bayesian credibility, cross-
conformal, and the proposed estimator), for differentéfatkernels, and for three confidence
levels. In purple and underlined: the empirical coveragseidt to the target coverage in absolute
value. In red and bolded: lowest widths and highest Speacuaelations obtained under the
target coverage condition

Method  Maté Coverage Average Width Spearman Corr.
sthod MaEM| 900, 9506 99%| 90% 95% 99%| 90% 95%  99%
GP 1/2 | 0.995 1.000 1.000| 0.252 0.300 0.394| 0.437 0.437 0.437

Credibility ~ 3/2 | 0.995 1.000 1.000 0.048 0.057 0.0750.459 0.459 0.459
intervals 52 | 0.995 1.000 1.000 0.013 0.016 0.0210.446 0.446 0.446
1/2 | 0.930 0.975 0.990 | 0.073 0.120 0.221|-0.245 —0.138 0.133

J+ 3/2 | 0.925 0.985 0.9950.012 0.022 0.062-0.194 0.243 —-0.048

5/2 | 0.915 0.970 0.995| 0.004 0.007 0.0160.072 0.141 -0.036

1/2 | 0.935 0.975 0.990| 0.083 0.130 0.231| 0.714 0.714 0.714

J-minmax  3/2 | 0.950 0.990 0.995 0.015 0.025 0.0660.709 0.709 0.709
5/2 | 0.970 0.995 0.9990.005 0.008 0.0180.694 0.694 0.694

1/2 | 0.920 0.970 0.990 | 0.068 0.105 0.193| 0.438 0.431 0.438

J+GP 3/2 | 0.915 0.965 0.995| 0.009 0.016 0.0360.466 0.459 0.466
5/2 | 0.915 0.965 0.990 | 0.003 0.005 0.0090.450 0.448 0.453

1/2 | 0.940 0.975 0.990| 0.078 0.115 0.203| 0.711 0.686 0.624

J-minmax-GP 3/2 | 0.945 0.985 0.9950.012 0.019 0.0390.709 0.663 0.588
5/2 | 0.975 0.985 0.9950.004 0.006 0.0100.642 0.598 0.549

GP Credibility Interval
J+

J-minmax
J+GP
J-minmax-GP

an correlation

Empirical coverage

0.0 - 00—
0.0 0.2 04 0.6 08 10 0.0 0.2 0.4 056 08 10 0.0 02 04 0.6 08 0

Target coverage 1 - « Target coverage 1 - « Target coverage 1 - a

FIG. C2: GP metamodel of Hartmann-3D function with Matérn-1/2 lerempirical coverage (with the
1 - « and 1- 2« marginal coverage in dotted lines), average width size, pehrman correlation of
the approximation error with the interval lengths for J+G#inmax-GP, and GP credibility interval, as a
function of the target coverage
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——  GP Credibility Interval
— J+

—— J-minmax
— J+GP
J-minmax-GP

Empirical coverage

Spearman correlation

Average prediction set width

0.0 0.2 0.4 ‘ 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Target coverage 1 - « Target coverage 1 - « Target coverage 1 - «
FIG. C3: GP metamodel of wing weight function with Matérn-5/2 kdreepirical coverage, average
width size, and Spearman correlation of the approximatmarevith the interval lengths for J+GP, J-
minmax-GP, GP credibility interval, and standard crossfeomal J+, J-minmax as a function of the target

coverage
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FIG. C4: GP metamodel of Morokoff & Caflisch function with Matérn23kernel empirical coverage,

average width size, and Spearman correlation of the appadion error with the interval lengths for J+GP,
J-minmax-GP, GP credibility interval, and standard crossformal J+, J-minmax as a function of the
target coverage
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FIG. C5: GP metamodel of TPD computer code output with Matérn-5f@éleempirical coverage, average
width size, and Spearman correlation of the approximatiarevith the interval lengths for J+GP, J-
minmax-GP, GP credibility interval, and standard crossfaomal J+, J-minmax as a function of the target
coverage
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