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Gaussian processes (GPs) are a Bayesian machine learning (ML) approach widely used to construct
surrogate models for the uncertainty quantification (UQ) of computer simulation codes in industrial
applications. It provides both a mean predictor and an estimate of the posterior prediction variance,
the latter being used to produce Bayesian credibility intervals. Interpreting these intervals relies on
the Gaussianity of the simulation model and the well-specification of the priors, which may not be
appropriate. We propose to address this issue with the help of conformal prediction (CP), which is a
finite-sample and distribution-free technique for estimating prediction intervals with marginal cov-
erage guarantees. In the present work, a method for building adaptive cross-conformal prediction
intervals is proposed by weighting the nonconformity score with the posterior standard deviation of
the GP. The resulting CP intervals exhibit a level of adaptivity akin to Bayesian credibility sets and
display a significant correlation with surrogate model local approximation error while being free from
the underlying model assumptions and having marginal frequentist coverage guarantees. These esti-
mators can be used to evaluate the quality of a GP surrogate model and can assist a decisionmaker in
choosing the best prior to the specific application of the GP. We illustrate the proposed method’s per-
formance through a panel of numerical examples based on various computer experiments, including
the GP metamodeling of analytical functions and an expensive-to-evaluate simulator of the clogging
phenomenon in steam generators of nuclear reactors.
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1. INTRODUCTION

1.1 Motivation and Overview

In the design and analysis of computer experiments (Fang et al., 2006), the “Verification, Val-
idation, and Uncertainty Quantification” (VV&UQ) framework has become a gold standard in
many engineering fields for assessing the impact of uncertainties in numerical simulation mod-
els (De Rocquigny et al., 2008; Ghanem et al., 2017; Sullivan, 2015). Uncertainty quantification
(UQ) defines a computer model as a functiong, mapping ad-dimensional inputX ∈ X ⊆ R

d

to a scalar outputY ∈ Y ⊆ R through the relationshipY = g(X). These models are critical
in engineering for decision-making tasks such as maintenance scheduling and risk assessment
of industrial systems. Typically,g represents numerical solvers for partial differential equations
or high-fidelity multi-physics models. In UQ, uncertainties are often treated probabilistically,
allowing input samples to be drawn from the joint distribution ofX and propagated throughg
[e.g., via Monte Carlo sampling, see Rubinstein and Kroese (2008)] to obtain the output dis-
tribution of Y . This process treatsg as a “black box,” requiring no modifications to the under-
lying code. However, wheng is computationally expensive (e.g., requiring hours or days per
evaluation), standard UQ techniques can become intractable. To address this, metamodels (or
surrogate models), denoted byĝ, compute an estimation function thanks to observation dataand
are often employed to reduce computational costs. This paper focuses on Gaussian process (GP)
regression metamodels, also known as “Kriging” metamodels(Gramacy, 2020; Rasmussen and
Williams, 2006).

In GP regression, various validation metrics have been developed in the last decades to as-
sess the predictive quality of the fitted GP metamodel (Demayet al., 2022; Marrel and Iooss,
2024). Some effort has been put into proposing validation metrics that enable one to go beyond
the measure of the quality of the mean prediction (typicallymeasured by the predictivity coeffi-
cient), for instance, by measuring the quality of the posterior predicted variance. As exemplified
in De Carvalho et al. (2022) and Jaber et al. (2025), additional cross-validation [such asK-fold
or leave-one-out (LOO)] techniques can be used for assessing the robustness of the estimation
on these validation indicators. However, to the best of the authors’ knowledge, validation is still
an open question, and no strong consensus has been reached regarding the precise metrics that
should be used for validating a GP metamodel or any other metamodel in general. An efficient
surrogate model must be highly adaptive to local information, particularly the training data. By
conditioning on the training data, the GP metamodel develops a deeper understanding of the un-
derlying patterns and avoids overconfidence in regions withlimited or no data. The reliability of
GP predictions is evaluated through Bayesian credibility intervals, which reflect the confidence
in these predictions. This reliability is significantly influenced by both the quality and quantity of
the training data. In areas with more observed data that is less noisy, the GP predictions are more
confident and reliable, resulting in narrower credibility intervals. Additionally, properly tuned
hyperparameters and carefully chosen covariance kernels can improve the GP’s trustworthiness.
Conversely, poor choices in these parameters can lead to overly optimistic or overly conserva-
tive uncertainty estimates. Along these lines, an alternative approach, proposed by Acharki et al.
(2023), aimed at enhancing the predictive capacity of a GP metamodel by optimizing the hy-
perparameters of the kernel in order to tackle model misspecification and obtain more robust
Bayesian credibility intervals. However, this method still heavily relies on the assumption of
Gaussianity of the original model.

In the present paper, the idea is to adapt the conformal prediction (CP) framework (Vovk
et al., 2005) so as to ensure more reliable prediction intervals for GP metamodels. This approach
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avoids relying heavily on strong Gaussian assumptions or having a well-defined prior for the
covariance kernel of the process. At the same time, it leverages the flexibility and adaptability
of the local approximation provided by GP models. These two key elements allow one to fully
interpret the uncertainty given by the predictive intervals we propose. This complementary tool
can thus be used to assist a decisionmaker in evaluating the general quality of a GP metamodel
in the light of the application for which it is used. We shouldemphasize that the methodologies
developed in this paper are more generic than the specific context of VV&UQ and can be applied
to different scenarios of GP regression, but we choose to remain in the setting of computer
experiments. The notations are used accordingly.

As for CP, it has gained in the last decade a huge popularity within the machine learning
(ML) community since it allows for distribution-free UQ in both classification and regression
applications (Angelopoulos and Bates, 2023; Vovk et al., 2005). The CP paradigm enables the
estimation of frequentist prediction intervals for any ML models (and, consequently, any meta-
model) that are agnostic to the specific family of models usedduring the learning step. The
prediction sets come with frequentist coverage guarantees, meaning that, without any additional
assumptions on the original model, the probability of the true computer code output value (at a
new input point), lying within the metamodel prediction interval, will be above a chosen confi-
dence threshold. The only key assumption necessary for constructing CP sets is theexchange-
ability of the dataset (Da Veiga, 2024), which means that the concatenation of the training data
set with the new test point is interchangeable in law, which is typically the case when dealing
with independent and identically distributed (i.i.d.) samples such as those obtained from a crude
Monte Carlo design of experiments (DoE) in UQ of computer models, or as encountered in many
standard ML datasets.

A primary challenge in CP lies in producingadaptiveprediction intervals, which refers to the
property of varying interval width for different test points. The concept of “adaptivity” (Romano
et al., 2019) is intrinsically tied to theexpressivityof the metamodel, as the interval width should
be small when the metamodel prediction error is minimal (in particular around training points)
and large otherwise. For the purpose of GP regression quality evaluation, the adaptivity of CP
interval candidates is crucial.

Three main families of methods exist for building CP intervals: the historical “full-confor-
mal” paradigm (Vovk et al., 2005), the “split-conformal,” and the “cross-conformal” settings
(Angelopoulos and Bates, 2023). For the standard CP estimators in these settings, adaptivity is
often lacking, and the exploration ofnonconformity scores(which measure how unusual a sug-
gested outcome seems with respect to other output values in the training dataset) for ensuring this
property has been predominantly studied and developed in the split-conformal case (Lei et al.,
2021; Romano et al., 2019; Seedat et al., 2023). Nevertheless, this approach is not practical in
cases with limited budgets and/or dataset size (which can bethe case for costly-to-evaluate com-
puter models in industrial applications). The split-conformal paradigm necessitates the allocation
of a calibration set, dividing the available data into three parts for training the metamodel, cali-
brating the prediction sets, and testing, respectively. Conversely, the cross-conformal paradigm,
and especially the “Jackknife+” interval estimators (Barber et al., 2021), allows for the utiliza-
tion of the entire dataset but requires an additional computational budget since it implies training
multiple LOO metamodels.

In this paper, we introduce a methodology to obtain distribution-free, finite-sample, and
adaptive prediction intervals with a desired property of “marginal coverage” (which will be later
detailed) for GP metamodels in computer experiments. We employ these estimators to evaluate
the GP metamodel performance and demonstrate their effectiveness in differentiating between
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various prior kernel choices. The proposed approach is illustrated through several numerical
examples using reference analytical functions, as well as an industrial computer-code use case.

1.2 Related Works

Within the full-conformal paradigm, the concept of “conformalizing” GPs can be traced back
to the Burnaev-Wasserman program(Vovk et al., 2005). A theorem establishes a theoretical
comparison between Bayesian credibility sets and CP sets, assuming the Gaussianity and well-
specification of the original model (Burnaev and Vovk, 2014). This limit theorem provides guar-
antees that the differences between the upper and lower endpoints of the two intervals follow
a zero-mean Gaussian distribution asymptotically. The conclusion drawn is that conformalizing
under the Gaussian hypothesis is not asymptotically “worse” than standard Bayesian credibility
sets. Thorough numerical comparisons with Bayesian credibility sets in various scenarios are
performed in Burnaev and Nazarov (2016).

The full-conformal paradigm extends to spatial Kriging as well, as demonstrated in Mao et al.
(2024), where CP algorithms are developed for non-Gaussiandata by establishing conditions for
approximate exchangeability. However, it is important to note that full-conformal methods are
computationally expensive, requiring a complete grid search on the output space, which can
quickly become prohibitive (Barber et al., 2021; Papadopoulos, 2024; Vovk et al., 2005). To
enhance the efficiency of full-conformal predictive intervals, a recent work from Papadopoulos
(2024) explores the idea of conformalizing GPs. In this work, the structure of the GP prediction is
used to shrink the output space and ease the computation of full-conformal intervals. Moreover,
it makes use of a nonconformity score similar to the one proposed in the present paper. However,
we stress that the motivations of our work are different: theuse of GP metamodels is standard in
UQ studies for computer experiments, and we propose a conformal method to lower the number
of hypotheses required to interpret prediction intervals.This is different in Papadopoulos (2024),
where GPs are used for efficiently estimating full-conformal prediction intervals.

The conformal paradigm finds application in enhancing Bayesian optimization, particularly
when GPs serve as query functions (Stanton et al., 2023). This is especially relevant when
Bayesian credible sets obtained are deemed unreliable due to model misspecification.

Finally, notice that an idea for combining the use of a calibration set and a specific CP esti-
mator (the Jackknife+ one, detailed further) for obtainingadaptive intervals has been explored in
the recent work of Deutschmann et al. (2023). However, to thebest of the authors’ knowledge,
pure cross-conformal adaptive methods have not been found in recent literature.

1.3 Contributions and Organization

In this work, we introduce a nonconformity score tailored for the use of GP metamodels within
the cross-conformal Jackknife paradigm (detailed further). Utilizing this score, we derive an
adaptive prediction interval named “J+GP,” along with its “min-max” variant, and establish the
marginal coverage. By quantifying the adaptivity of these setestimators, we show that the length
of these intervals is interpretable as a good proxy for surrogate precision. This interpretation is
supported by the significant statistical correlation observed between the interval widths and the
absolute values of the metamodel error, showcasing their capability to assess the quality of a GP.

We provide a reproducible and efficient implementation of the methodology through a Git-
Hub repository.† This repository is based on two pre-existing Python libraries: open source

†Available at https://github.com/vincentblot28/conformalizedgp
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initiative for the Treatment of Uncertainties, Risks’N Statistics (OpenTURNS), an open source
UQ platform (Baudin et al., 2017), and Model Agnostic Prediction Interval Estimator (MAPIE),
a library dedicated to CP (Cordier et al., 2023).

The paper is organized as follows. Section 2 recalls the definition and main principles of GP
regression and conformal predictors. Section 3 provides the formal definition of the new “J+GP”
conformal predictor, its estimator, and its variants. Moreover, a methodology for validating the
link between the error spread and the adaptivity is also presented. Section 4 proposes numerical
comparisons, through a panel of datasets for regression tasks, between usual GP-based credibil-
ity intervals and the proposed J+GP variants. Finally, Section 5 draws the main conclusions of
this work and discusses a few perspectives.

2. NOTATIONS AND BACKGROUND

In the rest of this paper, suppose a fixed probability space(Ω,F ,P). Random variables are de-
noted with capital letters.N (µ,σ2) denotes the Gaussian distribution with meanµ and standard
deviationσ, whileT (a, b, c) denotes the triangular distribution with modeb ∈ [a, c]. g : X → Y
denotes a deterministic function whereX ⊆ R

d andY ⊆ R are regular domains. For a setD,
1D denotes the indicator function ofD. The cardinal of the output space will be denoted by
ngrid = Card(Y). The Cartesian product of the two spaces is denoted byZ = X × Y , and 2L

denotes the set of subspaces of a setL. For a givenN ∈ N, we fix an i.i.d. datasetDN of size
N whose elements are written equivalently asZ(i) =

(
X(i), g

(
X(i)

))
=

(
X(i), Y (i)

)
for all

i ∈ {1, . . . , N}. We denote the features (or inputs) byX =
(
X(1), . . . , X(N)

)
and similarly the

outputsg(X) =
(
g
(
X(1)

)
, . . . , g

(
X(N)

))
, and the dataset is denoted byDN = (X, g(X)).

As customary in supervised ML, the dataset is split into training and testing subsets, typi-
cally DN = Dn ∪ Dm, with N = n + m and wheren,m are the respective sizes of the two
subsets. We denote bŷg a metamodel ofg trained onDn, andĝ−i is the corresponding LOO
metamodel trained onDn\

(
X(i), g

(
X(i)

))
with i ∈ {1, . . . , n}. The Spearman correlation co-

efficient between two random variablesX andY , corresponding to the Pearson coefficient in
the rank space, is denoted byrSpearman(X,Y ). The space of continuousk-differentiable func-
tions onL is denoted byCk(L). The space of square matrices of ordern onR will be denoted
by Mn(R). For an intervalI ⊂ R, we denote its length asℓ(I). For anym ∈ N, S(m) denotes
the set of permutations over{1, . . . ,m}. For any finite subset{vi}i=1,...,n of an ordered set, the
(1− α)-empirical quantile, withα ∈ (0, 1), is given by

q̂ +
n,α{vi} := the⌈(1− α)(n+ 1)⌉th smallest value ofv1, . . . , vn, (1)

where⌈·⌉ denotes the ceil function. Similarly, theα-empirical quantile is given by

q̂ −
n,α{vi} := the⌊α(n+ 1)⌋th smallest value ofv1, . . . , vn, (2)

where⌊·⌋ denotes the floor function such that

q̂ −
n,α{vi} = −q̂ +

n,α{−vi}. (3)

2.1 Gaussian Process Metamodeling

2.1.1 General Definitions

Consider a computer modelg and corresponding outputs on an i.i.d. design ofn-experimentsX.
These outputs can be perturbed by some additive noiseǫ, meaning that for alli ∈ {1, . . . , n},
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we have
Y (i) = g

(
X(i)

)
+ ǫi, (4)

with ǫ normally distributed for example. To build a GP metamodel (Rasmussen and Williams,
2006) of such a functiong, suppose thatg is the realization of a certain GPG ∼ GP(M,K),
whereM : X → Y is the meanof the process andK : X × X → R is the covariance
kernelof the process. Then, this process isconditionedon the available datasetDn. By doing so,
this procedure amounts to performing Bayesian regression considering a Gaussianprior on the
functiong in order to then obtain aposteriordistribution. By considering zero additive noiseǫ
on the outputs, this special case is referred to as GPinterpolation, and this is the usual path taken
for building GP surrogates of deterministic codes. The general principle of this type of method
is sketched in Fig. 1.

For simplicity, we choose thatM = 0 (corresponding to the case usually called “ordinary
Kriging”), and we use a Matérn-ν kernel defined, for allν = (2k+ 1)/2, k ∈ N andx, x′ ∈ X ,
by

K(x, x′) = K(ν,θ,σ)(x, x
′)

= σ2 21−ν

Γ(ν)

(√
2ν

|x− x′|
θ

)ν

Kν

(√
2ν

|x− x′|
θ

)
,

(5)

whereKν is a modified Bessel function of the second kind andΓ is the Euler gamma function.
This kernel allows better control of the regularity of the process through its hyperparameterν

since the corresponding sample paths will lie inC⌊ν−1⌋(X ) (Gu et al., 2018). The final condi-
tional process̃G := G|Dn is a GP with posterior mean and covariance functions defined for all
x, x′ ∈ X as

g̃(x) := k(x)⊤K−1g(X),

K̃(x, x′) := K(x, x′)− k(x)⊤K−1k(x′),
(6)

where for allx ∈ X ,

k(x) :=
(
K
(
x,X(1)

)
, . . . ,K

(
x,X(N)

))⊤ ∈ R
n,

K :=
(
K
(
X(i), X(j)

))
1≤i,j≤n

∈ Mn(R).
(7)

FIG. 1: GP interpolation metamodeling illustration. The data is aninput–output DoE computed with the
deterministic codeg. Then, one assumes these data correspond to a function that is a trajectory of an
underlying GP. In the absence of noise, the posterior process interpolates the data. In addition, this technique
produces nonzerocredibility intervals outside of the points inDn.
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The mean of the posterior processg̃ acts as a metamodel for the deterministic functiong, thus
in the case of GPs,̂g = g̃. For a choice of the regularity parameterν, the hyperparameters(σ2, θ)
of the Matérn kernel can be optimized using either maximum likelihood estimation (MLE) or a
cross-validation (CV) strategy (Acharki et al., 2023). In the case of ordinary Kriging, the usual
MLE optimization problem to be solved involves the negativelog likelihood and can be written
as (

σ2
MLE, θMLE

)
∈ arg min

(σ2,θ)

{
g(X)⊤K−1g(X) + log(detK)

}
. (8)

According to Acharki et al. (2023), the MLE procedure yieldsbetter results if the kernel type
is well specified, while the CV method is more robust in the case of misspecification. However,
this is not necessarily the case for GP interpolation as outlined in Petit et al. (2023). Forx ∈ X ,
the posterior standard deviation is denoted by

γ̃(x) := K̃1/2(x, x). (9)

In this setting, it can be shown that forx ∈
{
X(1), . . . , X(n)

}
, one has̃γ(x) = 0 and g̃(x) =

g(x), meaning that the GP metamodel is interpolating.
If the code is perturbed with an additive noise, then the usual GP regression setting is recov-

ered, and the covariance matrix has to take into account a so-callednugget effect, meaning that
one needs to add a regularization term modeling the noise dispersion in the covariance matrix,
such that

Kǫ := K + σ2
ǫIn, (10)

with In being the identity matrix of size(n × n). The new hyperparameterσǫ has to be tuned
by constructing a full-likelihood, and the resulting metamodel is no longer interpolating (Ras-
mussen and Williams, 2006). The MLE optimization problem now becomes

(
σ2

MLE , θMLE,σ
2
ǫ,MLE

)
∈ arg min

(σ2,θ,σ2
ǫ
)

{
g(X)⊤K−1

ǫ g(X) + log(detKǫ)
}
. (11)

Moreover, a “full-Bayesian” approach exists to obtain the posterior distribution of the hy-
perparameters and update the predictive distribution. However, this method is out of the scope
of this paper and would probably be cumbersome in the contextof cross-conformal predictors
since it would require tuning several complex Monte Carlo Markov chain algorithms on a large
number of LOO-validated metamodels.

The use of ordinary Kriging with Matérn kernels is usually chosen to simplify the GP defi-
nitions outlined in the preceding paragraphs. It is important to note that the methodology intro-
duced does not rely on the specific priors used. In fact, it is robust to prior misspecification, as
will be demonstrated in the following sections.

2.1.2 Bayesian Credibility Intervals

In Bayesian inference, a credibility interval is related tothe posterior distribution of a parameter.
For a certain credibility level(1 − α) ∈ (0, 1), the value of the parameter should lie in this
interval with probability 1− α given the available data. In the case of GPs, the parameter is
the mean of the posterior GP, and for any new pointX(n+1) ∈ X\X, the credibility prediction
interval is given by

CRα

(
X(n+1)

)
=

[
g̃
(
X(n+1)

)
± u1−α/2γ̃

(
X(n+1)

)]
, (12)
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whereu1−α/2 is the(1−α/2)-quantile of the standard Gaussian distribution. Under theGaussian
assumption on the original function, ifg is truly modeled by the posteriorG|Dn, then one should
have the exact training conditional coverage:

P

(
g
(
X(n+1)

)
∈ CRα

(
X(n+1)

) ∣∣ Dn

)
= 1− α, (13)

whereCRα

(
X(n+1)

)
is apredictioninterval for the functiong.

Even if the Gaussian assumption holds true, a common occurrence is themisspecificationof
the prior model. This implies that the set of prior mean and/or the family of kernels is proven to
be incorrect. In essence, the practical reliability of Bayesian credibility intervals, particularly for
GPs, can be significantly compromised.

2.2 Conformal Prediction Intervals

2.2.1 General Definitions

CP is a finite-sample and distribution-free framework for building prediction sets with a statis-
tical guarantee on the coverage rate for any predictive algorithm (Vovk et al., 2005). Suppose
a given training datasetDn and a new test pointZ(n+1) =

(
X(n+1), Y (n+1)

)
. It is assumed

that then + 1 points areexchangeable(Vovk et al., 2005). Formally this means that for any
permutationπ ∈ S(n+ 1), we have

(
Z1, . . . , Z

(n+1)
) L
=

(
Z(π(1)), . . . , Z(π(n+1))

)
, (14)

where
L
= denotes an equality “in law” (also called “in distribution”). More concretely, this means

thatZ(n+1) could have been used as a training point and that any trainingpoint could have been
a test point. An i.i.d. dataset is a special case of an exchangeable dataset. For any confidence
levelα ∈ (0, 1), a conformal predictor of coverage 1−α is any measurable function of the form
(Vovk et al., 2005):

Cα : Zn ×X → 2Y ,

(Dn, X) 7→ Cα(Dn, X) =: Cn,α(X),
(15)

such that, for a new test pointZ(n+1), one has the followingmarginalcoverage:

P

(
Y (n+1) ∈ Cn,α

(
X(n+1)

))
≥ 1− α, (16)

where the probability is taken over the datãDn = Dn ∪
{
Z(n+1)

}
. To build estimators of

such set-functions, one relies on the use of anonconformity score. This score is defined as a
measurable function of the form (Vovk et al., 2005):

R : Zn ×Z → R,

(Dn, Z) 7→ R(Dn, Z),
(17)

which quantifies how “not representative” the pointZ is, compared to the datasetDn. For exam-
ple, if a metamodel̂g of a codeg has been trained onDn, then a straightforward nonconformity
score is given by the residuals:

R(Dn, Z
(n+1)) =

∣∣g
(
X(n+1)

)
− ĝ

(
X(n+1)

)∣∣. (18)

It is noteworthy to insist that, in practice, the coverage property in Eq. (16) is calledmarginal
since it holds on average over all possible realizations of the training set̃Dn. A more standard
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coverage is thetraining-conditionalcoverage property (Angelopoulos and Bates, 2023), mean-
ing that, for a conformal predictor estimatorĈn,α, one has

P

(
Y (n+1) ∈ Ĉn,α

(
X(n+1)

) ∣∣ Dn

)
≥ 1− α. (19)

There are mainly three ways of estimating such conformal predictors: “full-CP,” also called
“transductive CP” (Vovk et al., 2005); “split-CP,” also called “inductive CP” (Papadopoulos
et al., 2002a,b); and “cross-CP” (Vovk, 2015).

Transductive CP is historically the first CP method introduced by Vovk et al. (2005). For any
choice of a nonconformity score, it implies computing the following set:

Ĉn,α

(
X(n+1)

)
=

{
y ∈ Y :

1
n

Card
[{

i ∈ {1, . . . , n}, R
(
D̃n, Z

(i)
)

≥ R
(
D̃n,

(
X(n+1), y

))}]
≥ α

}
.

(20)

As mentioned in the introduction, transductive CP is computationally intensive as it involves
training one metamodel for each possible value inY . This conformal predictor can be made
computationally effective in the cases of Ridge and Lasso regressions (Lei, 2019; Nouretdinov
et al., 2001),k-nearest neighbors algorithm (Papadopoulos et al., 2008, 2011), and more recently,
GP regression (Papadopoulos, 2024).

Inductive – or split-CP – on the other hand, has a very low computational cost as it requires a
single training of the learning model. However, it needs to create (or save) a proper “calibration”
(or “holdout”) set that contains observations that have notbeen used during the training phase.
This set is then used to estimate the quantiles of the evaluated nonconformity scores (usually, the
residuals) on this set for constructing the intervals. However, for industrial applications where
only a few hundred observations are available, such a calibration set may be very difficult to
obtain.

Unlike the first two techniques, cross-CP has a relatively low computational cost and does
not necessitate any holdout set. We now proceed to present the cross-conformal predictors.

2.2.2 Cross-Conformal Prediction Sets

The “standard” Jackknife prediction intervals require learning a metamodel̂g on a training
datasetDn as well asn metamodels built using the LOO validation technique, denoted byĝ−i,
with 1 ≤ i ≤ n. It then makes use of the(1−α)-empirical quantile of the LOO residuals defined
by

R LOO
i :=

∣∣g
(
X(i)

)
− ĝ−i

(
X(i)

)∣∣. (21)

For a new pointX(n+1) and a coverage level 1−α, the standard Jackknife prediction interval is
defined by

Ĉ J
n,α

(
X(n+1)

)
=

[
ĝ
(
X(n+1)

)
± q̂ ±

n,α

{
R LOO

i

}]
. (22)

Unfortunately, this prediction interval does not fulfill the marginal coverage property in
Eq. (16), especially in the case of a small dataset, as mentioned in Barber et al. (2021). To
circumvent this limitation, a more robust cross-conformalestimator is the “Jackknife+” pro-
posed by Barber et al. (2021). In this case, the interval is nolonger centered on the prediction of
the fully trained metamodel, but the LOO predictions are added in the empirical quantile. The
estimator is thus given by
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Ĉ J+
n,α

(
X(n+1)

)
=

[
q̂ ±
n,α

{
ĝ−i

(
X(n+1)

)
± R LOO

i

}]
. (23)

This estimator has themarginal coverageproperty of 1− 2α. As mentioned in Theorem 5 of
Barber et al. (2021), the factor “2” in 1− 2α can be removed if the metamodel satisfies the
(ǫ, λ)-out-sample stabilityfor ǫ > 0 andλ ∈ [0, 1] if for all i ∈ {1, . . . , n},

P(|ĝ
(
X(i)

)
− ĝ−i

(
X(i)

)
| ≤ ǫ) ≥ 1− λ. (24)

In this case, Theorem 5 of Barber et al. (2021) states that theǫ-inflation of the Jackknife+ interval
[see Eq. (25)] achieves a marginal coverage of level 1−α−2

√
λ. Hence, if one can find a small

enough value ofλ, which satisfies Eq. (24), then a marginal coverage of levelapproximately
1− α can be achieved, leading to the following prediction set:

Ĉ J+,ǫ
n,α

(
X(n+1)

)
=

[
q̂ ±
n,α

{
ĝ−i

(
X(n+1)

)
±R LOO

i

}
± ǫ

]
. (25)

Nonetheless, the authors of Barber et al. (2021) indicate that, in numerical applications, the
empirical coverage of the Jackknife+ barely drops below 1− α unless the case study is some-
what “pathological.” More recently, it has been established by Liang and Barber (2023) that the
training-conditional property in Eq. (19) is achieved under the out-sample stability property. In
most empirical cases, however, the marginal coverage property is respected.

Another way of achieving the 1− α coverage is through the “Jackknife-minmax” method,
again proposed by Barber et al. (2021), which is a more conservative implementation of the
Jackknife+ method. This method differs from the latter as itdoes not use the prediction of each
LOO-trained metamodel but the minimum (resp., the maximum)predicted value to compute
the lower (resp., the upper) confidence bound. The Jackknife-minmax estimator is given by the
following expression:

Ĉ J-mm
n,α

(
X(n+1)

)
=

[
mini∈{1,...,n}

{
ĝ−i

(
X(n+1)

)}
− q̂ −

n,α

{
R LOO

i

}
,

maxi∈{1,...,n}

{
ĝ−i

(
X(n+1)

)}
+ q̂ +

n,α

{
R LOO

i

}]
.

(26)

An illustration adapted from Barber et al. (2021) of the various Jackknife methods can be found
in Fig. 2.
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ĝ(X(n+1))±RLOO

2
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FIG. 2: Illustration of the various cross-CP methods (adapted fromBarber et al., 2021)
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Even if the Jackknife methods have a lower computational cost than the full-CP, if one dis-
poses of a dataset with more than a few thousand observations, or in the case where the meta-
modelĝ is long to train, the cost of cross-CP methods can still be quite expensive. A recap of the
different cross-CP methods mentioned with their coverage and computational cost can be found
in Table 1.

Finally, a major drawback of this CP method is that there is notheoretical guarantee of
adaptivity. We recall that adaptivity (Romano et al., 2019)is the property of a CP interval to
have nonconstant widths at different test points, and this property is related to the expressivity
of the surrogate model studied. This topic will be addressedin the following using GPs.

3. CONFORMALIZED GAUSSIAN PROCESS REGRESSION: THE J+GP METHOD

3.1 Motivations and Proposed Estimator

The idea is to adapt the Jackknife+ method to GP metamodels toobtain adaptive prediction in-
tervals. Suppose we have conditioned the GP on a datasetDn by optimizing the hyperparameters
(σ2

MLE , θMLE) of a Matérn-ν kernel with givenν. We thus have access to the posterior meang̃
as well as the posterior standard deviation denoted byγ̃. For the respective LOO posteriors, we
write g̃−i andγ̃−i for all i ∈ {1, . . . , n}. We proceed in defining the LOO Gaussian nonconfor-
mity score, fixing a smallδ > 0, by

R LOOγ
i :=

∣∣g
(
X(i)

)
− g̃−i

(
X(i)

)∣∣
max

(
δ, γ̃−i

(
X(i)

)) , ∀i ∈ {1, . . . , n}. (27)

The interest ofδ is to avoid the zero division when the metamodel is interpolating (e.g., in the
absence of a nugget effect). For a new prediction pointX(n+1) ∈ X and a coverage rate(1 −
α) ∈ (0, 1), we define the “J+GP” conformal predictors, which are a variant of the Jackknife+
estimator adapted to the GP metamodeling setting:

Ĉ J+GP
n,α

(
X(n+1)

)
=

[
q̂ ±
n,α

{
g̃−i

(
X(n+1)

)
±R LOOγ

i × max
(
δ, γ̃−i

(
X(n+1)

))}]
. (28)

This estimator enables adaptivity at different predictionpoints since the edges of the intervals are
controlled by a function ofX(n+1). Moreover, for this estimator, we achieve the same marginal
coverage as the Jackknife+ as presented in the following theorem.

Theorem 1. AssumeDn is exchangeable. For a new pointX(n+1) ∈ X and a coverage level
1− α ∈ (0, 1), one has

P

(
g
(
X(n+1)

)
∈ Ĉ J+GP

n,α

(
X(n+1)

))
≥ 1− 2α. (29)

TABLE 1: Marginal coverage and reminder of both training and evaluation costs
for CP methods adapted from Barber et al. (2021).n denotes the training sample
size,ngrid is the cardinal of the output space, andm is the size of the test sample

Method Marginal coverage Training cost Evaluation cost

Full ≥ 1− α n · ngrid m · n · ngrid

Split ≥ 1− α 1 n

Jackknife+ ≥ 1− 2α n m · n
Jackknife-minmax ≥ 1− α n m · n
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The proof is given in Appendix A and is basedmutatis mutandison the proof for the Jackknife+
in Barber et al. (2021). In the same spirit of Barber et al. (2021), we similarly propose the
following “J-minmax-GP” estimator:

Ĉ J-mm-GP
n,α

(
X(n+1)

)
=

[
mini

{
g̃−i

(
X(n+1)

)}
− q̂ −

n,α

{
R LOOγ

i × max
(
δ, γ̃−i

(
X(n+1)

))}
,

maxi
{
g̃−i

(
X(n+1)

)}
+ q̂ +

n,α

{
R LOOγ

i × max
(
δ, γ̃−i

(
X(n+1)

))}]
.

(30)
Notice that this CP estimator inherits from the same coverage guarantee as the standard min-max
estimator, as shown by the following theorem.

Theorem 2. AssumeDn is exchangeable. For a new pointX(n+1) ∈ X and a marginal coverage
levelα ∈ (0, 1), one has

P

(
g
(
X(n+1)

)
∈ Ĉ J-mm-GP

n,α

(
X(n+1)

))
≥ 1− α. (31)

The proof of the preceding theorem is given in Appendix B and is adapted from the proof for the
Jackknife-minmax in Barber et al. (2021). The proposed adaptive cross-CP methods with their
coverage and computational cost are summarized in Table 2.

3.2 Methodology Evaluation

A two-step approach is considered to assess the capabilities of the proposed J+GP and J-minmax-
GP estimators in comparison with the usual cross-CP ones andthe Bayesian credibility intervals.
In the following, letĈ ∗

n,α denote any type of prediction interval. The following computations
are performed on the test subsetDm. First, we check whether the empirical coverage property is
achieved for different values of the coverage rate 1− α ∈ [0, 1]:

1
m

m∑

i=1

1
{
g
(
X(i)

)
∈ Ĉ ∗

n,α

(
X(i)

)}
≥ 1− α. (32)

Second, the correlation of the interval width and the model error is computed. Indeed, for the
intervals to be informative, they have to be small when the prediction error is small and large
otherwise. Therefore, we could expect a significant correlation between the width of the interval
and the residual. This metric will quantitatively reflect the adaptive nature of the proposed pre-
diction intervals. It is thus valid to verify that, for a given coverage 1−α ∈ (0, 1), the Spearman
correlation on the test data is nonzero is significantly different from 0 with a robustness analysis
using Bootstrap estimation, i.e., that

TABLE 2: Marginal coverage, training, and evaluation costs for the intervals
proposed.n denotes the training sample size, andm is the size of the test
sample

Method Marginal coverage Training cost Evaluation cost

J+GP ≥ 1− 2α n m · n
J-minmax-GP ≥ 1− α n m · n
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0 ≪ rSpearman

({
ℓ
(
Ĉ ∗

n,α

(
X(i)

))
,
∣∣g
(
X(i)

)
− g̃

(
X(i)

)∣∣
}
i∈{n+1,...,n+m}

)
, (33)

whereℓ
(
Ĉ ∗

n,α

(
X(i)

))
denotes the length of the prediction interval. Here, the Spearman corre-

lation is chosen since it is more robust than the Pearson linear correlation coefficient to possible
outliers and because it is able to measure monotonic dependency. It is computed in a similar
fashion to the usual Pearson linear correlation, but it considers the rank transformation of data.
To achieve statistical robustness, we compute bootstrap intervals on the estimation of the corre-
lation metric.

Concerning the quality of the metamodel, it is assessed withthe help of the usualpredictivity
coefficientcomputed from test data (Marrel et al., 2008):

Q2 = 1−

1
m

n+m∑
i=n+1

∣∣g
(
X(i)

)
− g̃

(
X(i)

)∣∣2

1
n

n∑
i=1

(
g
(
X(i)

)
− 1

n

∑n
j=1 g(X

(j))

)2 . (34)

This metric is widely used for assessing the predictive power of the surrogate model and for en-
suring its validation (see, e.g., Fekhari et al., 2023). Thecloser to 1 theQ2 is, the more predictive
the mean metamodel is. Here, the analysis can be completed bycomputing the empirical cover-
age rates and the correlations between the lengths of the intervals and the residuals. Additionally,
this strategy provides a way for decisionmakers to evaluatewhich model best suits their applica-
tions, since it can be used with different priors on the covariance kernel and the mean to further
enhance the predictive power of the final metamodel. In the following numerical examples, we
demonstrate the strength of our methodology by testing several GP metamodels with different
values of Matérn regularity parameterν and show that it allows one to discriminate between
them in order to choose the best one. We focus on Matérn kernels because they are widely used
in practice. However, this approach can be applied to other kernel families as well.

4. NUMERICAL RESULTS

In order to test our methodology, a series of numerical toy and use cases are carried out. We
choose standard benchmark functions from the UQ and GP literature, as well as a real use case
from nuclear engineering provided by EDF, the French national electric utility company. In the
numerical results, all examples are treated as deterministic. Here, we suppose no noise in the
data, which amounts to performing GP interpolation. Thus, the so-called nugget effect intro-
duced in Eq. (10) is not considered here. Our goal is to assessthe adaptivity of the estimators
J+GP and J+GP-minmax using the Spearman correlation between the errors of the metamodel
and the width of the prediction intervals.

As a preliminary step, standardization of the input data is recommended. Since, in these ex-
amples, we have access to the input distributions, the procedure only consists of subtracting the
mean and dividing by the standard deviation. We start with anillustrative case of a misspec-
ified one-dimensional GP and then proceed with a detailed study of three cases: namely, the
wing weight function (Forrester et al., 2008), the Morokoff& Caflisch function (Morokoff and
Caflisch, 1995), and an industrial use case provided by EDF (named “TPD” for “THYC-Puffer-
DEPOTHYC” clogging simulation computer code; see Jaber et al. (2025) for more information
about this use case). We start by going over the characteristics of the computer experiments used

Volume 6, Issue 3, 2025



50 Jaber et al.

and present the performance of each GP metamodel by computing its predictivity coefficient
[recalled in Eq. (34)] and themean squared error(MSE) given by

MSE=
1
m

n+m∑

i=n+1

∣∣g̃
(
X(i)

)
− g

(
X(i)

)∣∣2. (35)

For each dataset, we present the performances of the different prediction intervals, namely the
GP credibility intervals and the proposed J+GP and J-minmax-GP estimators. Three indices
based on the prediction intervals are computed on the test dataset:

• the empirical coverage rate given in Eq. (32);
• the empirical average width:

ℓ(Ĉ ∗
n,α) =

1
m

m∑

i=1

ℓ
(
Ĉ ∗

n,α

(
X(i)

))
; (36)

• the Spearman correlation between the width and the error, asgiven in Eq. (33).

We compute the three metrics at all coverage levels 1− α and display the plots for the Matérn
kernel associated with the best performance. Then, we show tables for three different target-
coverage levels (i.e., 90%, 95%, and 99%) and three different Matérn regularity parameters,
such thatν ∈ {1/2, 3/2, 5/2}.

In the rest of this section, we highlight in a series of tables, for each empirical coverage
rate mentioned above, the target coverage rate, the kernel whose GP metamodel has the smallest
average width, and the metamodel with the highest Spearman correlation (i.e., the correlation
between the width of the interval and the residual error). Ingeneral, it is not the same kernel
that performs best on both metrics. In this case, the decisionmaker must choose between more
sensitivity to local information or more conservatism, depending on the intended application.

4.1 Code Description and Availability for Reproducible Results

The numerical results have been obtained with a Python code built upon two preexisting open
source libraries: namely, OpenTURNS (Baudin et al., 2017),which is dedicated to UQ (espe-
cially, GP regression), and MAPIE (Cordier et al., 2023), which is dedicated to CP. A wrapper
around OpenTURNS has been implemented to make the Scikit-learn (Pedregosa et al., 2011)
GP constructors (i.e., withfit and predict methods) compatible with OpenTURNS’s existing
application programming interface since MAPIE handles such Scikit-learn objects. Only a few
changes have been made to the MAPIE library to make it compatible with our methodology, and
it preserves all of its standard conformal methods. For reproducibility purposes, the code can be
found on the following GitHub repository: https://github.com/vincentblot28/conformalizedgp.

4.2 Numerical Results

4.2.1 Illustrative Function with Misspecified GP

To illustrate the performance of the J+GP prediction intervals in the misspecified case, we create
an artificial function with an oscillatory regime and a strong discontinuity within its domain. To
do this, we define the following one-dimensional function for x ∈ [−10, 10]:

f(x) =

{
sin(x), if x > 1

−x, if x ≤ 1
. (37)
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We use 10 points for training and 90 for estimation on a 100-point discretization of the interval.
We use zero-mean prior on the mean and a squared-exponentialkernel and optimize the kernel
hyperparameters. The resulting GP and predictive intervals are illustrated in Fig. 3. In this case,
the GP is intentionally designed to be misspecified, resulting in Bayesian credibility intervals
for x ≤ 0 that fail to capture the true values of the function. In contrast, the J+GP prediction
intervals have a more conservative size and, due to their adaptiveness, successfully capture a
larger portion of the true values of the functionf . This adaptiveness is absent in the classical J+
prediction intervals, which remain nearly constant acrossall input regions, as can be seen in the
right-hand side plot. This example clearly demonstrates that the J+GP prediction intervals are
more robust in quantifying prediction uncertainty when theGP model priors are misspecified.
Moreover, the adaptive sizing of these intervals makes themmore informative in local regions
with denser training points, as seen in the region wherex ≥ 0.

4.2.2 Performance of the Trained GPs

In Table 3, we present the different dataset sizes and the percentages used for training and testing.
For the three different Matérn regularity parameters, thecorresponding predictivity coefficients
and mean squared errors are displayed.

4.2.3 Wing Weight Function

The wing weight function was proposed in Forrester et al. (2008). It is an analytic function
with 10 independent input variables representing the design parameters of the wing and a scalar
output representing the weight of the wing. This engineering model is representative of a Cessna
C172 Skyhawk wing aircraft and is used for UQ benchmarks in the aerospace field. If we denote
the inputs asX = (X1, . . . , X10), the function is given by

g(X) = 0.036(X1)
0.758(X2)

0.0035

(
X3

cos2(X4)

)0.6

(X5)
0.006

× (X6)
0.04

(
100×X7

cos(X4)

)−0.3

(X8X9)
0.49 +X1X10.

(38)
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FIG. 3: Misspecified GP metamodel—with a squared-exponential kernel—of illustrative functionf . The
function f , as well as the training points and the resulting mean predictor, are plotted. On the left the
posterior credibility intervals for 1−α = 90% are plotted. In the middle the J+ prediction intervals for the
same coverage level are plotted. On the right, for the same coverage level, the J+GP predictive intervals are
obtained from our methodology.
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TABLE 3: Summary of the performance metrics of the GP
metamodels

ν
Wing

Weight
Morokoff &

Caflisch
TPD

—

d 7 10 7
N 600 600 1000

% train 75 75 80
% test 25 25 20

1/2
Q2 0.993 0.928 0.990

MSE 16.32 2.19× 10−3 1.46

3/2
Q2 0.998 0.940 0.996

MSE 2.65 1.80× 10−3 0.54

5/2
Q2 0.999 0.937 0.997

MSE 0.82 1.89× 10−3 0.46

The response variableY is obtained byY (i) = g
(
X(i)

)
, whereX(i) = (X

(i)
1 , . . . , X

(i)
10 ) for all

i ∈ {1, . . . , N}, drawn using Monte Carlo sampling according to uniform probability distribu-
tions whose marginal supports are given in Table 4. The generated dataset consists ofN = 600
realizations. We optimize the GP hyperparameters by MLE with 75% of the points and use the
remaining samples to test our methodology.

In the results presented in both Fig. 4 and Table 5, the credibility intervals of the GP are larger
than those of the conformal methods, thus providing empirical coverage higher than the desired
one for all target coverage levels. The GP interval size as a function of the coverage level 1−α is
monotonically increasing since it is driven by the monotonenormal quantileu1−α/2 in Eq. (12).
Therefore, the ranking of the interval sizes does not change, and the Spearman correlation index
remains constant for the GP intervals, as can be seen in the plot on the right side of Fig. 4. It
is noteworthy that the J+GP conformal predictor in Fig. 4 achieves the smallest interval width
and has, on average, the same Spearman correlations as the GPcredibility intervals between its
lengths and the metamodel approximation error. The J-minmax-GP achieves an even better aver-
age correlation of the interval width with the error, at the expense of being more conservative in
size. In Table 5 we can see that the Matérn kernel with the regularity parameterν = 5/2 achieves
the smallest width and the best Spearman correlation. More importantly, the sizes of the adaptive
CP intervals are smaller than the GP credibility intervals and do not require any other hypothesis

TABLE 4: Supports of the uniform marginal input
distributions for the wing weight function

Component Domain Component Domain

X1 [150, 200] X6 [0.5, 1]
X2 [220, 300] X7 [0.08, 0.18]
X3 [6, 10] X8 [2.5, 6]
X4 [−10, 10] X9 [1700, 2500]
X5 [16, 45] X10 [0.025, 0.08]
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FIG. 4: GP metamodel of wing weight function with Matérn-5/2 kernel empirical coverage (with the
1 − α and 1− 2α marginal coverage in dotted lines), average width size, andSpearman correlation of
the approximation error with the interval lengths for J+GP,J-minmax-GP, and GP credibility interval, as a
function of the target coverage

TABLE 5: Wing weight analytical function. Empirical coverage rate,average width, and
Spearman correlation for different predictive intervals (standard Bayesian credibility, cross-
conformal, and the proposed estimator) for different Matérn kernels and for three confidence
levels. In purple and underlined: the empirical coverage closest to the target coverage in absolute
value. In red and bolded: lowest widths and highest Spearmancorrelations obtained under the
target coverage condition

Method Mat érn
Coverage Average Width Spearman Corr.

90% 95% 99% 90% 95% 99% 90% 95% 99%

GP
Credibility
intervals

1/2 0.983 1.000 1.000 27.313 32.545 42.7720.198 0.198 0.198

3/2 1.000 1.000 1.00011.319 13.487 17.7250.326 0.326 0.326

5/2 1.000 1.000 1.000 6.296 7.502 9.859 0.351 0.351 0.351

J+

1/2 0.917 0.958 0.992 12.922 18.227 32.359–0.079 –0.092 –0.155

3/2 0.925 0.975 0.992 5.660 8.523 14.0840.127 –0.046 –0.243

5/2 0.933 0.975 0.992 3.337 5.006 7.933 0.188 –0.172 –0.161

J-minmax

1/2 0.917 0.958 0.992 14.231 19.545 33.7920.309 0.309 0.309

3/2 0.942 0.983 1.000 6.563 9.463 15.1010.349 0.349 0.349

5/2 0.967 0.983 1.000 3.945 5.653 8.576 0.341 0.341 0.341

J+GP

1/2 0.917 0.950 0.992 11.962 16.731 28.4580.198 0.188 0.205

3/2 0.982 0.967 1.000 4.997 6.786 10.8850.326 0.328 0.321

5/2 0.933 0.967 1.000 2.993 3.865 6.205 0.349 0.352 0.348

J-minmax-GP

1/2 0.917 0.958 0.992 13.208 18.048 29.8250.333 0.307 0.274

3/2 0.942 0.983 1.000 5.881 7.685 11.7460.361 0.346 0.339

5/2 0.975 0.992 1.000 3.591 4.495 6.835 0.382 0.372 0.363

for interpretation. The good fit of the Matérn-5/2 could already be seen when inspecting theQ2,
but the study of the prediction intervals allows for a complementary uncertainty evaluation that
does not require any further hypothesis for interpretation(as in the case for the interpretation
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of the Bayesian credibility intervals). The proposed method also outperforms the standard J+,
J-minmax cross-conformal approaches, as can be seen from the results in Appendix C, where
the J+ interval lacks any adaptivity, and the J-minmax is tooconservative.

4.2.4 Morokoff & Caflisch Function

The second example is the Morokoff & Caflisch function (Morokoff and Caflisch, 1995), defined
on the unit hypercube[0, 1]d by

g(X) =
1
2

(
1+

1
d

)d d∏

i=1

(Xi)
1/d. (39)

We choosed = 10 and useN = 600 samples drawn according to the multivariate normal distri-
butionN (0,C) with the variance-covariance matrixC described in Acharki et al. (2023). We
observe in the middle plot of Fig. 5 that the GP credibility intervals have a relatively small aver-
age width size at all target coverage levels. This size is closely followed by the J+GP estimator
and becomes larger than the GP intervals after a certain coverage level threshold. However, it
should be noted that the GP empirical coverage does not reachthe high target coverage levels as
seen in the left plot of Fig. 5. This indicates a possible misspecification of the metamodel since
the empirical coverage here estimates the training-conditional Gaussian credibility interval in
Eq. (12).

We observe a similar behavior for the Spearman correlation for the Morokoff & Caflisch
function as for the wing weight function. Namely, the J+GP prediction interval has, on average,
about the same size and error correlation properties as the GP credibility intervals. We still
observe that the J-minmax-GP conformal predictor has more conservative interval sizes and
stronger correlations. As can be seen in Appendix C, the adaptive J+GP and J-minmax-GP cross-
conformal predictors have improved performance compared to their nonadaptive counterparts.

As can be seen in Table 3, the predictivity coefficient is highfor all three regularity param-
eters, with only a small variation betweenν = 3/2 andν = 5/2. The proposed methodology is
of particular interest here for completing the GP prior to kernel discrimination. In Table 6, under
the target coverage levels 90%, 95%, and 99%, the Matérn-3/2 outperforms the Matérn-5/2. The
J+ has the smallest width for the 99% target level, but its error correlation is very low.
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FIG. 5: GP metamodel of Morokoff & Caflisch function with Matérn-3/2 kernel empirical coverage (with
the 1− α and 1− 2α marginal coverage in dotted lines), average width size and Spearman correlation of
the approximation error with the interval lengths for J+GP,J-minmax-GP and GP credibility interval, as a
function of the target coverage.
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TABLE 6: Morokoff & Caflisch analytical function. Empirical coverage rate, average width,
and Spearman correlation for different predictive intervals (standard Bayesian credibility, cross-
conformal, and the proposed estimator), for different Mat´ern kernels, and for three confidence
levels. In purple and underlined: the empirical coverage closest to the target coverage in absolute
value. In red and bolded: lowest widths and highest Spearmancorrelations obtained under the
target coverage condition

Method Mat érn
Coverage Average Width Spearman Corr.

90% 95% 99% 90% 95% 99% 90% 95% 99%

GP
Credibility
intervals

1/2 0.925 0.958 0.983 0.161 0.192 0.252 0.258 0.258 0.258

3/2 0.867 0.917 0.975 0.119 0.142 0.187 0.257 0.257 0.257

5/2 0.842 0.900 0.950 0.108 0.129 0.170 0.241 0.241 0.241

J+

1/2 0.875 0.942 0.992 0.128 0.182 0.305 –0.215 0.012 0.096

3/2 0.883 0.975 0.992 0.134 0.171 0.288 0.132 –0.155 –0.070

5/2 0.892 0.942 0.983 0.136 0.175 0.282 0.084 0.199 0.001

J-minmax

1/2 0.900 0.950 0.992 0.144 0.197 0.321 0.132 0.132 0.132

3/2 0.967 0.975 0.992 0.158 0.195 0.309 0.283 0.283 0.283

5/2 0.942 0.975 0.992 0.164 0.201 0.310 0.238 0.238 0.238

J+GP

1/2 0.875 0.942 0.983 0.122 0.175 0.292 0.252 0.254 0.257

3/2 0.875 0.958 0.983 0.125 0.158 0.271 0.254 0.264 0.259

5/2 0.900 0.958 0.983 0.132 0.172 0.238 0.243 0.248 0.230

J-minmax-GP

1/2 0.883 0.958 0.992 0.137 0.190 0.309 0.253 0.261 0.272

3/2 0.933 0.975 0.992 0.150 0.182 0.297 0.317 0.318 0.305

5/2 0.942 0.983 0.983 0.160 0.202 0.265 0.285 0.276 0.273

4.2.5 Industrial Use Case: The THYC-Puffer-DEPOTHYC Code

The following industrial use case is related to the issue of clogging in steam generators of pres-
surized water nuclear reactors (Prusek, 2012). Over time, the steam generators of some reactors
may face the challenge of clogging, a deposition phenomenonthat increases the risk of mechan-
ical and vibratory stresses on tube bundles and internal structures. It also affects their response
during hypothetical accidental transients. To make maintenance planning more robust, EDF
R&D has developed a multi-physics computational chain named “THYC-Puffer-DEPOTHYC”
(TPD). This numerical tool uses specific physical models to reproduce the kinetics of clogging
and to generate time-dependent clogging rate profiles for specific steam generators (Feng et al.,
2023; Prusek, 2012). Some input parameters of this code are subject to uncertainties. To better
understand the sensitivity of the output uncertainty with respect to the input variability, a meta-
modeling methodology based on polynomial chaos expansionsand advanced global sensitivity
techniques has recently been proposed in Jaber et al. (2025). Here, it is assumed that we dis-
pose of a dataset of 103 Monte Carlo simulations, withd = 7 independent input variables to
predict the clogging rate at a given time. The probability distributions of the inputs are listed in
Table 7. More information about the physical nature of the variables can be found in Jaber et al.
(2025).
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TABLE 7: Distributions of the input variables of TPD

Component Distribution Component Distribution

X1 N (101.6, 4.0) X5 T (0.5, 5.0, 10.0)× 10−6

X2 N (0.0233, 0.0005) X6 T (1.0, 4.5, 8.0)× 10−9

X3 T (0.2, 0.3, 0.5) X7 T (0.1, 7.8, 12)× 10−4

X4 T (0.01, 0.05, 0.3)

The results of the analysis are detailed in Table 8. The predictive capability of the pos-
terior GP metamodel proves to be extremely high (Q2 ≥ 0.99) for all regularity parameters,
making it again challenging to find the optimal candidate. Todetermine what leads to a robust
GP metamodel of TPD to speed up industrial studies on clogging, the different conformal pre-
dictors reveal an advantage for a GP employing Matérn-3/2 and Matérn-5/2 prior kernels. As
seen in Fig. 6, the GP credibility intervals show poor coverage rates above the target coverage
threshold of∼ 0.8. The J+GP also shows poor empirical coverage above 1− α = 0.5. This
result is explained by Theorem 1 since coverage is only guaranteed above 1− 2α, and it is

TABLE 8: THYC-Puffer-DEPOTHYC analytical function. Empirical coverage rate, average
width, and Spearman correlation for different predictive intervals (standard Bayesian credibility,
cross-conformal, and the proposed estimator), using various Matérn kernels and three confidence
levels. In purple and underlined: the empirical coverage closest to the target coverage in absolute
value. In red and bolded: lowest widths and highest Spearmancorrelations obtained under the
target coverage condition

Method Mat érn
Coverage Average Width Spearman Corr.

90% 95% 99% 90% 95% 99% 90% 95% 99%

GP
Credibility
intervals

1/2 0.960 0.975 0.975 4.717 5.621 7.387 0.463 0.463 0.463

3/2 0.915 0.940 0.950 2.000 2.384 3.133 0.353 0.353 0.353

5/2 0.850 0.885 0.945 1.632 1.944 2.555 0.281 0.281 0.281

J+

1/2 0.855 0.900 0.975 2.438 3.610 7.391 0.266 –0.223 0.132

3/2 0.840 0.905 0.975 1.529 2.031 3.943–0.355 0.043 0.202

5/2 0.840 0.920 0.965 1.353 1.836 3.109–0.052 0.301 0.273

J-minmax

1/2 0.860 0.920 0.975 2.763 3.943 7.711 0.666 0.666 0.666

3/2 0.890 0.920 0.980 1.857 2.350 4.260 0.653 0.653 0.653

5/2 0.905 0.950 0.980 1.763 2.233 3.505 0.606 0.606 0.606

J+GP

1/2 0.845 0.895 0.975 2.314 3.198 6.367 0.469 0.466 0.458

3/2 0.840 0.925 0.955 1.523 2.058 3.215 0.351 0.345 0.352

5/2 0.845 0.905 0.970 1.509 2.072 3.689 0.279 0.280 0.288

J-minmax-GP

1/2 0.870 0.920 0.975 2.638 3.523 6.700 0.617 0.592 0.546

3/2 0.900 0.950 0.985 1.852 2.387 3.543 0.519 0.489 0.449

5/2 0.895 0.960 0.995 1.918 2.477 4.080 0.424 0.390 0.349

Journal of Machine Learning for Modeling and Computing



Conformal Approach for GP Surrogates 57

0.0 0.2 0.4 0.6 0.8 1.0

Target coverage 1 - α

0.0

0.2

0.4

0.6

0.8

1.0

E
m
p
ir
ic
a
l
co
v
er
a
g
e

0.0 0.2 0.4 0.6 0.8 1.0

Target coverage 1 - α

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
v
er
a
g
e
p
re
d
ic
ti
o
n
se
t
w
id
th GP Credibility Interval

J+GP

J-minmax-GP

0.0 0.2 0.4 0.6 0.8 1.0

Target coverage 1 - α

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

S
p
ea
rm

a
n
co
rr
el
a
ti
o
n

FIG. 6: GP metamodel of TPD dataset with Matérn-3/2 kernel empirical coverage, average width size and
Spearman correlation of the approximation error with the interval lengths for J+GP, J-minmax-GP, and GP
credibility interval, as a function of the target coverage

visible here on the TPD use case. These empirical coverage results are conditioned on the train-
ing dataset.

Therefore, to properly check the lower bound, it would be necessary to average all permuta-
tions of the train-test dataset to fully account for this result. Such scenarios where the coverage
is strictly between 1−2α and 1−α are rather rare for standard J+ (as explained in Barber et al.,
2021). However, the low empirical coverage rate observed for the credibility intervals may signal
misspecification, and thus their interpretation may not be reliable for quantifying the metamodel
uncertainty. Knowing this fact, the J+GP has smaller average widths and the same average cor-
relation as the GP credibility intervals; these characteristics have already been observed in the
previous examples. The J-minmax-GP also has stronger correlations at all coverage rates, but the
average width is larger than both the credibility intervalsand the J+GP. The correlation variation
J-minmax has a different profile here, being regular and monotonically decreasing, whereas, in
the previous examples, it was shaped as a parabola. This could be explained by the presence
of more data (N = 103) and perhaps better regularity of the sample. In particular, the standard
J-minmax estimator shows a remarkable degree of adaptivity, as seen in Table 8, especially for
the coverage rates of 90% and 95%, surpassing the correlations obtained with the unreliable
Bayesian credibility interval widths. Therefore, in termsof applications for speeding up indus-
trial uncertainty studies of clogging, the GP metamodel with zero mean and Matérn-5/2 kernel
optimized by MLE can be considered as the best candidate for metamodeling TPD.

4.3 Synthesis of the Results

We have shown that for a given target coverage, studying the average width of the prediction
intervals and their Spearman correlation with the error improves the evaluation of the metamodel
quality. This has been numerically exemplified on two different deterministic analytical UQ
functions and on a complex industrial use case based on a realindustrial computational chain,
for which the selection of different metamodels, e.g., by different Matérn kernels, on the sole
basis of theQ2 is not fully conclusive. The proposed new cross-conformal J+GP estimator yields
smaller widths on average while keeping the correlation of widths with the metamodel error close
to that of the Bayesian credible intervals, and the J-minmax-GP achieves better correlations than
the standard Bayesian credible intervals at the cost of larger intervals. We further show that
inspection of our hypothesis-free CP intervals can help in choosing a more robust prior kernel
for the GP metamodel of a computer code.
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5. CONCLUSION AND PERSPECTIVES

In this work, we explore the idea of “conformalizing” metamodels based on GP regression in the
cross-conformal prediction paradigm in order to make GP metamodel evaluation more robust for
industrial applications. The idea is to make GP metamodels more reliable to improve prediction
in the context of possible misspecification. To this end, we adapt the classical LOO nonconfor-
mity score by weighting it with the local GP posterior standard deviation. This method allows
the CP intervals to have a better adaptivity, thus having a different interval span for different
new test points. Moreover, the proposed J+GP prediction interval enjoys the same theoretical
marginal coverage property as the Jackknife+ one and its min-max variant proposed by Bar-
ber et al. (2021). In order to quantify this adaptivity of theprediction interval, we evaluate the
Spearman correlation between the width of the intervals andthe absolute value of the metamodel
approximation error. We show that our method achieves a better adaptivity than both standard
cross-conformal prediction methods and GP credibility intervals.

We demonstrate the potential application of our methodology for GP model selection among
different prior regularity parameters for the Matérn kernels. Furthermore, we show how the pro-
posed methodology can help to evaluate the validity of a GP metamodel for industrial appli-
cations through a real use case related to nuclear engineering. A future line of research would
be to generalize this methodology to families of deterministic metamodels, such as polynomial
chaos expansions, which do not naturally come equipped withan inherent stochastic structure
like GPs, or to more general statistical models that come with a quantifiable notion of dispersion.
Moreover, recent work by Pion and Vazquez (2024) shows that our J+GP estimator generally out-
performs the full-conformal approach and other variants inthe setting of Gaussian interpolation
(i.e., GP regression without the nugget effect).
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Générateurs de Vapeur, PhD, Université Aix-Marseille,2012.
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APPENDIX A. PROOF OF THEOREM 1

We prove a more general version of the theorem. We assume thatwe are in a regression setting,
and we use a model̂g that has an estimator of its standard deviationσ̂(X). Moreover, we show
that a slight modification of the scaled nonconformity scoreby taking powersβ > 0 of the
standard deviation does not change the main results [such powers are used in Papadopoulos
(2024) in the full-conformal setting]. For GPs, the predictor is the posterior mean̂g = g̃, and the
estimated standard deviation is the posterior covarianceσ̂ = γ̃.

Proof. Assume that
Y = g(X) + ǫ, (A.1)

with ǫ representing noise, and that a statistical learning modelĝ is trained on the datasetDn =
{(X(i), Y (i))}ni=1. Let

(
X(n+1), Y (n+1)

)
∈ X × Y be a new point. We denote byDn+1 :=

D ∪ {(X(n+1), Y (n+1))}. Let ĝ−(i,j) ∀i 6= j ∈ {1, ..., n + 1} be the statistical learning
Dn+1\{(X(i), Y (i)), (X(j), Y (j))}. By exchangeability we have that̂g−(i,j) = ĝ−(j,i) and
ĝ−i = ĝ−(i,n+1). Let us denote bŷσ

(
X(i)

)
an estimator of the standard deviation ofĝ and

assume without loss of generality thatσ̂ > 0 and similarly for the corresponding LOO (we could
take the max function with a smallδ > 0 otherwise). Similarly, as for the Gaussian nonconfor-
mity score, we define

R LOOσ
i =

∣∣Y (i) − ĝ
(
X(i)

)∣∣
σ̂

β
−i

(
X(i)

) . (A.2)

We then proceed and defineR ∈ Mn+1(R) as

Rij =




+∞ if i = j,
∣∣Y (i) − ĝ−(i,j)

(
X(i)

)∣∣ / σ̂
β

−(i,j)

(
X(i)

)
if i 6= j.

(A.3)

For simplifying the notations, we will now fixβ = 1. We proceed in defining the matrixA ∈
Mn+1({0, 1}):

Aij = 1{Rij > Rji}. (A.4)

It can be easily observed thatAij = 1 ⇔ Aji = 0 except whenj = i. The strange set associated
to A for α ∈ (0, 1) is

S(A) :=



i ∈ {1, . . . , n+ 1} :

n+1∑

j=1,j 6=i

Aij ≥ (1− α)(n+ 1)



. (A.5)

In other words, a pointi is strangeif the residualRij compared withRji for all j 6= i is larger
for a given fraction of comparisons.
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We start by bounding the cardinal ofS(A). Let i be a strange point.Aij = 0 for at most
α(n + 1) − 1 other strange pointsj sinceAij = 1 for at least(1 − α)(n + 1) andi 6= j. Let
s = |S(A)|; we now group pairs of strange points byAij = 0. For a chosen pointi, there are
at mosts possibilities for the strange pointj, and for each one,Aij = 0 at mostα(n + 1) − 1
times. Thus there are at mosts× (α(n+ 1)− 1) pairsof strange points.

We can now bound the number of ways we can choose two points inS(A), and we obtain

s(s− 1)
2

≤ s× (α(n+ 1)− 1), (A.6)

and rearranging:
s ≤ 2α(n+ 1). (A.7)

By assumption, the datasetDn+1 is exchangeable. Thus, using permutation matricesΠ, which
maps aj ∈ {1, . . . , n+ 1} to n+ 1 (such thatΠj,n+1 = 1), we prove that

P(n+ 1 ∈ S(A)) = P
(
j ∈ S

(
ΠAΠ⊤

))
= P(j ∈ S(A)). (A.8)

Therefore, any point is equally likely to be strange. We have, then:

P(n+ 1 ∈ S(A)) =
1

n+ 1

n+1∑

j=1

P(j ∈ S(A)) =
E[|S(A)|]
n+ 1

≤ 2α. (A.9)

We can now reconnect with the definition of prediction intervals. We denote the generic version
of our proposed J+GP prediction interval as

Ĉ∗
n,α

(
X(n+1)

)
=

[
q̂ ±
n,α

{
ĝ−i

(
X(n+1)

)
±R LOOσ

i × σ̂−i

(
X(n+1)

)}]
. (A.10)

Let us suppose thatY (n+1) /∈ Ĉ ∗
n,α. Then, for at least(1−α)(n+1) valuesi in {1, . . . , n+1},

we have
Y (n+1) > ĝ−i

(
X(n+1)

)
+R LOOσ

i × σ̂−i

(
X(n+1)

)
, (A.11)

or
Y (n+1) < ĝ−i

(
X(n+1)

)
− R LOOσ

i × σ̂−i

(
X(n+1)

)
. (A.12)

Finally, we can compute:

(1− α)(n+ 1) ≤
n+1∑

i=1

1
{
Y (n+1) /∈ ĝ−i

(
X(n+1)

)
±R LOOσ

i × σ̂−i

(
X(n+1)

)}

=
n+1∑

i=1

1
{
R LOOσ

i × σ̂−i

(
X(n+1)

)
< |Y (n+1) − ĝ−i

(
X(n+1)

)
|
}

=
n+1∑

i=1

1

{
R LOOσ

i <

∣∣Y (n+1) − ĝ−i

(
X(n+1)

)∣∣
σ̂−i

(
X(n+1)

)
}

=

n+1∑

i=1

1

{∣∣Y (i) − ĝ−i

(
X(i)

)∣∣
σ̂−i

(
X(i)

) <

∣∣Y (n+1) − ĝ−i

(
X(n+1)

)∣∣
σ̂−i

(
X(n+1)

)
}

=
n+1∑

i=1

1{Ri,n+1 < Rn+1,i} =
n+1∑

i=1

An+1,i,
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where the last equality above is obtained with the identities σ̂−i

(
X(i)

)
= σ̂−(i,n+1)

(
X(i)

)
and

ĝ−i

(
X(i)

)
= ĝ−(i,n+1)

(
X(i)

)
. Thereforen+ 1 ∈ S(A) and:

P

(
g
(
X(n+1)

)
/∈ Ĉ ∗

n,α

(
X(n+1)

))
≤ P(n+ 1 ∈ S(A)) ≤ 2α. (A.13)

APPENDIX B. PROOF OF THEOREM 2

Proof. Assume the same hypothesis as in the previous theorem, and wemake use of the same
definitions and notations. We define the matrixR̃ ∈ Mn+1(R) as

R̃ij =

{
+∞ if i = j,

Rij × σ̂−(i,j)

(
X(n+1)

)
if i 6= j.

(B.1)

We redefine the matrixA ∈ Mn+1({0, 1}):

Aij = 1{minj′ R̃ij′ ≥ R̃ji}, (B.2)

where minj′ R̃ij′ is the smallest residual for the pointiwhen leaving out any pointj
′∈{1, . . . , n}.

We start by bounding the number of strange points, choose:

i∗ ∈ arg min
i∈S(A)

{
minj′ R̃ij′

}
. (B.3)

We can observe that for all strange pointsj ∈ S(A), the matrix elementAi∗j is null. Indeed,
this is because by definition,

∀j ∈ S(A), R̃ji∗ ≥ minj′ R̃jj′ ≥ minj′ R̃i∗j
′ . (B.4)

We can then easily bound the number of strange points usingi∗ ∈ S(A):

n+ 1− |S(A)| ≥
n+1∑

j=1

Ai∗j ≥ (1− α)(n+ 1), (B.5)

and a rearrangement gives
|S(A)| ≤ α(n+ 1). (B.6)

Using the exchangeability property in the same fashion as the preceding proof, we have

P (n+ 1 ∈ S(A)) ≤ α. (B.7)

Let us suppose now thatY (n+1) /∈ Ĉ ∗−minmax
n,α . Then, for at least(1 − α)(n + 1) valuesi in

{1, . . . , n+ 1}, we have

Y (n+1) > maxi=1,...,nĝ−i

(
X(n+1)

)
+ R LOOσ

i × σ̂−i

(
X(n+1)

)
, (B.8)

or
Y (n+1) < mini=1,...,nĝ−i

(
X(n+1)

)
− R LOOσ

i × σ̂−i

(
X(n+1)

)
. (B.9)
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We denotêgmin
(
X(i)

)
:= minj=1...,nĝ−j

(
X(i)

)
, and similarly forĝmax and R̃i

(
X(n+1)

)
:=

R LOOσ
i × σ̂−i

(
X(n+1)

)
. Finally, we can compute:

(1− α)(n+ 1)

≤
n+1∑

i=1

1

{
Y (n+1) /∈

[
ĝmin

(
X(n+1)

)
− R̃i

(
X(n+1)

)
, ĝmax

(
X(n+1)

)
+ R̃i

(
X(n+1)

)]}

=
n+1∑

i=1

1
{

minj=1,...,n

∣∣Y (n+1) − ĝ−j

(
X(n+1)

)∣∣ ≥ R LOOσ
i × σ̂−i

(
X(n+1)

)}

=
n+1∑

i=1

1

{
minj=1,...,n

∣∣Y (n+1) − ĝ−j

(
X(n+1)

)∣∣
σ̂−j

(
X(n+1)

) × σ̂−j

(
X(n+1)

)
≥ R LOOσ

i × σ̂−i

(
X(n+1)

)
}

=
n+1∑

i=1

1

{
minj=1,...,n

∣∣Y (n+1) − ĝ−(n+1,j)

(
X(n+1)

)∣∣
σ̂−(n+1,j)

(
X(n+1)

) × σ̂−(n+1,j)

(
X(n+1)

)

≥
∣∣Y (i) − ĝ−(i,n+1)

(
X(i)

)∣∣
σ̂−(i,n+1)

(
X(i)

) × σ̂−(i,n+1)

(
X(n+1)

)
}

=
n+1∑

i=1

1
{

minj=1,...,nRn+1,j × σ̂−(n+1,j)

(
X(n+1)

)
≥ Ri,n+1 × σ̂−(i,n+1)

(
X(n+1)

)}

=
n+1∑

i=1

1
{

minj=1,...,nR̃n+1,j ≥ R̃i,n+1

}

=
n+1∑

i=1

An+1,i.

Thereforen+ 1 ∈ S(A), and we conclude as in the preceding theorem.

APPENDIX C. ADDITIONAL RESULTS

APPENDIX C.1 Branin Function

The Branin or Branin–Hoo function is a two-dimensional scalar function defined as

f(X1, X2) = a
(
X2 − bX2

1 + cX1 − r
)2

+ s(1− t) cos(X1) + s, (C.1)

where the parameters are chosen asa = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10, and
t = 1/(8π).

This function is effectively learned by Matérn GPs, as evidenced by the very highQ2 val-
ues in Table C1. Despite the excellent predictivity coefficient, it is important to note that the
Bayesian credibility intervals are quite large, resultingin a high level of empirical coverage. The
J+GP method, on the other hand, provides significantly improved UQ through narrower interval
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TABLE C1: Summary of the performance metrics
of additional GP metamodels

ν Branin Hartmann-3D

—

d 2 3

N 1000 1000
% train 80 80
% test 20 20

1/2
Q2 0.999 0.918

MSE 6× 10−1 3× 10−3

3/2
Q2 0.999 0.930

MSE 2× 10−3 2× 10−3

5/2
Q2 0.999 0.932

MSE 2× 10−5 2× 10−3

widths. As shown in Table C2, the Matérn-5/2 kernel achieves the smallest average interval
width for critical coverage rates. In addition, the metamodel residuals show a strong correlation
with both the GP credibility intervals and the interval width. Notably, the regular J-minmax
method also shows a high level of correlation, further validating the quality of the Matérn-5/2
prior choice. In the middle plot of Fig. C1, it is evident thatthe J+GP average interval width is
significantly smaller compared to the GP credibility intervals.

APPENDIX C.2 Hartmann-3D Function

The Hartmann-3D function is defined as

f(X1, X2, X3) = −
4∑

i=1

αi exp


−

3∑

j=1

Aij(Xj − Pij)
2


, (C.2)

where

α =




1.0

1.2

3.0

3.2


, A =




3.0 10.0 30.0

0.1 10.0 35.0

3.0 10.0 30.0

0.1 10.0 35.0


, P = 10−4




3689 1170 2673

4699 4387 7470

1091 8732 5547

381 5743 8828


. (C.3)

The function is effectively learned by a GP, as evidenced by the highQ2 values in Table C1.
The Matérn-1/2 kernel shows the strongest correlations, as highlighted by the regular J-minmax
interval in Table C3, underscoring the adaptiveness of thiscross-conformal method. Similar
conclusions hold for the Hartmann-3D GP metamodel: Bayesian credibility intervals are overly
optimistic, with very large widths and excessively high coverage rates. As shown in Fig. C2, the
conformalized GP prediction intervals (J+GP and J-minmax-GP) achieve much narrower widths
compared to their Bayesian credibility counterparts.

APPENDIX C.3 Comparison with Standard CP Intervals
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TABLE C2: Branin analytical function. Empirical coverage rate, average width, and Spearman
correlation for different predictive intervals (standardBayesian credibility, cross-conformal, and
the proposed estimator), for different Matérn kernels, and for three confidence levels. In purple
and underlined: the empirical coverage closest to the target coverage in absolute value. In red
and bolded: lowest widths and highest Spearman correlations obtained under the target coverage
condition

Method Mat érn
Coverage Average Width Spearman Corr.

90% 95% 99% 90% 95% 99% 90% 95% 99%

GP
Credibility
intervals

1/2 0.995 0.995 1.000 7.992 9.523 12.515 0.607 0.607 0.607

3/2 1.000 1.000 1.000 0.418 0.498 0.655 0.568 0.568 0.568

5/2 1.000 1.000 1.000 0.039 0.046 0.061 0.505 0.505 0.505

J+

1/2 0.915 0.965 0.990 0.875 1.873 7.466 0.118 –0.086 0.089

3/2 0.935 0.975 0.990 0.039 0.103 0.354 0.230 0.309 0.033

5/2 0.955 0.975 0.990 0.006 0.013 0.034 0.890 0.450 0.469

J-minmax

1/2 0.930 0.965 0.990 1.049 2.048 7.639 0.737 0.737 0.737

3/2 0.970 0.980 0.990 0.053 0.116 0.368 0.855 0.855 0.855

5/2 0.980 0.985 0.990 0.010 0.017 0.039 0.878 0.878 0.878

J+GP

1/2 0.920 0.955 0.990 0.797 1.666 6.554 0.606 0.605 0.603

3/2 0.935 0.975 0.995 0.037 0.083 0.297 0.577 0.569 0.569

5/2 0.955 0.970 1.000 0.005 0.009 0.024 0.579 0.570 0.537

J-minmax-GP

1/2 0.935 0.965 0.990 0.971 1.840 6.742 0.816 0.777 0.678

3/2 0.975 0.980 0.995 0.051 0.097 0.311 0.759 0.703 0.627

5/2 0.985 0.985 1.000 0.010 0.013 0.029 0.745 0.704 0.621
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FIG. C1: GP metamodel of Branin function with Matérn-5/2 kernel empirical coverage (with the 1−
α and 1− 2α marginal coverage in dotted lines), average width size, andSpearman correlation of the
approximation error with the interval lengths for J+GP, J-minmax-GP, and GP credibility interval, as a
function of the target coverage.
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TABLE C3: Hartmann-3 analytical function. Empirical coverage rate,average width, and
Spearman correlation for different predictive intervals (standard Bayesian credibility, cross-
conformal, and the proposed estimator), for different Mat´ern kernels, and for three confidence
levels. In purple and underlined: the empirical coverage closest to the target coverage in absolute
value. In red and bolded: lowest widths and highest Spearmancorrelations obtained under the
target coverage condition

Method Mat érn
Coverage Average Width Spearman Corr.

90% 95% 99% 90% 95% 99% 90% 95% 99%

GP
Credibility
intervals

1/2 0.995 1.000 1.000 0.252 0.300 0.394 0.437 0.437 0.437

3/2 0.995 1.000 1.000 0.048 0.057 0.075 0.459 0.459 0.459

5/2 0.995 1.000 1.000 0.013 0.016 0.021 0.446 0.446 0.446

J+

1/2 0.930 0.975 0.990 0.073 0.120 0.221 –0.245 –0.138 0.133

3/2 0.925 0.985 0.995 0.012 0.022 0.062–0.194 0.243 –0.048

5/2 0.915 0.970 0.995 0.004 0.007 0.016 0.072 0.141 –0.036

J-minmax

1/2 0.935 0.975 0.990 0.083 0.130 0.231 0.714 0.714 0.714

3/2 0.950 0.990 0.995 0.015 0.025 0.066 0.709 0.709 0.709

5/2 0.970 0.995 0.995 0.005 0.008 0.018 0.694 0.694 0.694

J+GP

1/2 0.920 0.970 0.990 0.068 0.105 0.193 0.438 0.431 0.438

3/2 0.915 0.965 0.995 0.009 0.016 0.036 0.466 0.459 0.466

5/2 0.915 0.965 0.990 0.003 0.005 0.009 0.450 0.448 0.453

J-minmax-GP

1/2 0.940 0.975 0.990 0.078 0.115 0.203 0.711 0.686 0.624

3/2 0.945 0.985 0.995 0.012 0.019 0.039 0.709 0.663 0.588

5/2 0.975 0.985 0.995 0.004 0.006 0.010 0.642 0.598 0.549
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FIG. C2: GP metamodel of Hartmann-3D function with Matérn-1/2 kernel empirical coverage (with the
1 − α and 1− 2α marginal coverage in dotted lines), average width size, andSpearman correlation of
the approximation error with the interval lengths for J+GP,J-minmax-GP, and GP credibility interval, as a
function of the target coverage
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FIG. C3: GP metamodel of wing weight function with Matérn-5/2 kernel empirical coverage, average
width size, and Spearman correlation of the approximation error with the interval lengths for J+GP, J-
minmax-GP, GP credibility interval, and standard cross-conformal J+, J-minmax as a function of the target
coverage
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FIG. C4: GP metamodel of Morokoff & Caflisch function with Matérn-3/2 kernel empirical coverage,
average width size, and Spearman correlation of the approximation error with the interval lengths for J+GP,
J-minmax-GP, GP credibility interval, and standard cross-conformal J+, J-minmax as a function of the
target coverage
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FIG. C5: GP metamodel of TPD computer code output with Matérn-5/2 kernel empirical coverage, average
width size, and Spearman correlation of the approximation error with the interval lengths for J+GP, J-
minmax-GP, GP credibility interval, and standard cross-conformal J+, J-minmax as a function of the target
coverage
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